Plant Systematics and Evolution

, Volume 298, Issue 6, pp 1057–1071 | Cite as

Inflorescence and floral development in Ranunculus and three allied genera in Ranunculeae (Ranunculoideae, Ranunculaceae)

  • Liang Zhao
  • Julien B. Bachelier
  • Hong-li Chang
  • Xian-hua Tian
  • Yi Ren
Original Article


The development of inflorescences and flowers of three species of Ranunculus and three allied genera (Ceratocephala, Halerpestes, and Oxygraphis) (Ranunculeae, Ranunculaceae) was studied comparatively using scanning electron microscopy (SEM). Our results showed that both the inflorescence branching patterns and the floral morphogenesis in Ranunculeae are extremely labile. Inflorescences range from a thyrsoid to a solitary flower, with intermediate branching patterns in which sometimes only the terminal flower of the inflorescence main axis fully develops, such as in Ceratocephala and Halerpestes. Only in Oxygraphis is the flower truly solitary. In all species, sepal primordia are broad, crescent-shaped, and truncate, and the primordia of petals, stamens, and carpels are rather small and hemispherical, and very similar to each other. The plastochron between the last sepal and the first petal is relatively long. At the onset of androecium or gynoecium development, the regular spiral pattern of the perianth may become irregular in Ceratocephala and Oxygraphis, whereas spiral and whorled patterns may co-occur in Ranunculus and Halerpestes. The development of the petals is delayed with regard to that of the other floral organs in all species studied here, except for Oxygraphis. Our study confirms that, for solitary flowers, increased number of petals and the shape of the ventral nectary may have evolved independently many times, as suggested by earlier molecular phylogenetic studies and ancestral character reconstructions. With respect to the remainder of the tribe, Oxygraphis displays several autapomorphies, such as nondelayed development and increased number of petals, which will be of interest for comparative molecular developmental studies.


Batrachium Ceratocephala Floral morphology Floral phyllotaxis Halerpestes Oxygraphis Inflorescence (branching pattern) 


  1. Benson L (1940) The North American subdivisions of Ranunculus. Am J Bot 27:799–807Google Scholar
  2. Bentham G, Hooker JD (1862) Genera plantarum I. Reeves, LondonGoogle Scholar
  3. Chang H-L, Ren Y, Lu A-M (2005) Floral morphogenesis of Anemone rivularis Buch.-Ham. ex DC. var. flore-minore Maxim. (Ranunculaceae) with special emphasis on androecium developmental sequence. J Integr Plant Biol 47:257–263Google Scholar
  4. Cook CDK (1966) A monographic study of Ranunculus subgenus Batrachium (DC.) A. Gray. Mitt Bot Staatssamml München 6:47–237Google Scholar
  5. Cui L, Wall PK, Leebens-Mack JH, Lindsay BG, Soltis DE, Doyle JJ, Soltis PS, Carlson JE, Arumuganathan K, Barakat A, Albert VA, Ma H, de Pamphilis CW (2006) Widespread genome duplications throughout the history of flowering plants. Genome Res 16:738–749PubMedGoogle Scholar
  6. Dahlgren G (1992) Ranunculus subgens Batrachium on the Aegean islands and adjacent areas: nectary types and breeding system. Nord J Bot 12:299–310Google Scholar
  7. Damerval C, Nadot S (2007) Evolution of perianth and stamen characteristics with respect to floral symmetry in Ranunculales. Ann Bot 100:631–640PubMedGoogle Scholar
  8. De Candolle AP (1818) Regni vegetabilis systema naturale I. Treuttel and Würtz, ParisGoogle Scholar
  9. De Candolle AP (1824) Prodromus systematis naturalis regni vegetabilis I. Treuttel and Würtz, ParisGoogle Scholar
  10. Di Stilio VS, Kramer EM, Baum DA (2005) Floral MADS box genes and homeotic gender dimorphism in Thalictrum dioicum (Ranunculaceae)—a new model for the study of dioecy. Plant J 41:755–766PubMedGoogle Scholar
  11. Emadzade K, Lehnebach C, Lockhart P, Hörandl E (2010) A molecular phylogeny, morphology and classification of genera of Ranunculeae (Ranunculaceae). Taxon 59:809–828Google Scholar
  12. Endlicher S (1839) Genera plantarum. 2. Beck, ViennaGoogle Scholar
  13. Endress PK (1987) Floral phyllotaxis and floral evolution. Bot Jahrb Syst 108:417–438Google Scholar
  14. Endress PK (1995) Floral structure and evolution in Ranunculanae. Plant Syst Evol 9(Suppl):47–61Google Scholar
  15. Endress PK (2006) Angiosperm floral evolution: morphological developmental framework. Adv Bot Res 44:1–61Google Scholar
  16. Endress PK (2010a) Flower structure and trends of evolution in eudicots and their major subclades. Ann Missouri Bot Gard 97:541–583Google Scholar
  17. Endress PK (2010b) Disentangling confusions in inflorescence morphology: patterns and diversity of reproductive shoot ramification in angiosperms. J Syst Evol 48:225–239Google Scholar
  18. Endress PK, Doyle JA (2007) Floral phyllotaxis in basal angiosperms-development and evolution. Curr Opin Plant Biol 10:52–57PubMedGoogle Scholar
  19. Endress PK, Doyle JA (2009) Reconstructing the ancestral flower and its initial specializations. Am J Bot 96:22–66PubMedGoogle Scholar
  20. Erbar CS, Kusma S, Leins P (1998) Development and interpretation of nectary organs in Ranunculaceae. Flora 194:317–332Google Scholar
  21. Feng M, Fu D-Z, Liang H-X, Lu A-M (1995) Floral morphogenesis of Aquilegia L. (Ranunculaceae). Acta Bot Sin 37:791–794Google Scholar
  22. Gregory WC (1941) Phylogenetic and cytological studies in the Ranunculaceae. Trans Am Philos Soc 31:443–521Google Scholar
  23. Gu T-Q, Ren Y (2007) Floral morphogenesis of Coptis (Ranunculaceae). Chin Bull Bot 24:80–86Google Scholar
  24. Gupta D, Singh V (1983) Floral organogenesis of Ranunculus sceleratus L. Proc Indian Nat Sci Acad B 49:273–277Google Scholar
  25. Hammond HD (1952) Serology applied to systematic studies in the Ranunculaceae. University of Pennsylvania, DissertationGoogle Scholar
  26. Hiepko P (1965) Vergleichend-morphologische und entwicklungsgeschichtliche Untersuchungen über das Perianth bei den Polycarpicae. Bot Jahrb Syst 84:359–426Google Scholar
  27. Hileman LC, Irish VF (2009) More is better: the uses of developmental genetic data to reconstruct perianth evolution. Am J Bot 96:83–95PubMedGoogle Scholar
  28. Hirmer M (1931) Zur Kenntnis der Schraubenstellungen im Pflanzenreich. Planta 14:132–206Google Scholar
  29. Hoot SB (1995) Phylogeny of the Ranunculaceae based on preliminary atpB, rbcL and 18S nuclear ribosomal DNA sequence data. Plant Syst Evol 9(Suppl):241–251Google Scholar
  30. Hoot SB, Kramer J, Arroyo MTK (2008) Phylogenetic position of the South American dioecious genus Hamadryas and related Ranunculeae (Ranunculaceae). Int J Plant Sci 169:433–443Google Scholar
  31. Hörandl E, Paun O, Johansson JT, Lehnebach C, Armstrong T, Chen L, Lockhart PJ (2005) Phylogenetic relationships and evolutionary traits in Ranunculus s. l. (Ranunculaceae) inferred from ITS sequence analysis. Mol Phyl Evol 36:305–327Google Scholar
  32. Hutchinson J (1923) Contributions towards a phylogenetic classification of flowering plants. I. Bull Misc Inform Kew Bull 1923:65–89Google Scholar
  33. Irish VF (2006) Duplication, diversification, and comparative genetics of angiosperm MADS-box genes. Adv Bot Res 44:129–161Google Scholar
  34. Irish VF (2009) Evolution of petal identity. J Exp Bot 60:2517–2527PubMedGoogle Scholar
  35. Jabbour F, Ronse De Craene LP, Nadot S, Damerval C (2009) Establishment of zygomorphy on an ontogenic spiral and evolution of perianth in the tribe Delphinieae (Ranunculaceae). Ann Bot 104:809–822PubMedGoogle Scholar
  36. Janchen E (1949) Die systematische Gliederung der Ranunculaceen und Berberidaceen. Denkschr Akad Wiss Wien Math-Naturw Kl 108:1–82Google Scholar
  37. Jensen U, Hoot SB, Johansson JT, Kosuge K (1995) Systematics and phylogeny of the Ranunculaceae-a revised family concept on the basis of molecular data. Plant Syst Evol 9(Suppl):273–280Google Scholar
  38. Johansson JT (1995) A revised chloroplast DNA phylogeny of the Ranunculaceae. Plant Syst Evol 9(Suppl):253–261Google Scholar
  39. Johansson JT (1998) Chloroplast DNA restriction site mapping and the phylogeny of Ranunculus (Ranunculaceae). Plant Syst Evol 213:1–19Google Scholar
  40. Kosuge K (1994) Petal evolution in Ranunculaceae. Plant Syst Evol 8(Suppl):185–191Google Scholar
  41. Kosuge K, Tamura M (1989) Ontogenetic studies on petal of the Ranunculaceae. J Jap Bot 64:65–74Google Scholar
  42. Kramer EM (2009) Aquilegia: a new model for plant development, ecology, and evolution. Annu Rev Plant Biol 60:261–277PubMedGoogle Scholar
  43. Kramer EM, Irish VF (1999) Evolution of genetic mechanisms controlling petal development. Nature 399:144–148PubMedGoogle Scholar
  44. Kramer EM, Zimmer EA (2006) Gene duplication and floral developmental genetics of basal eudicots. Adv Bot Res 44:353–384Google Scholar
  45. Kramer EM, Di Stilio VS, Schluter P (2003) Complex patterns of gene duplication in the APETALA3 and PISTILLATA lineages of the Ranunculaceae. Int J Plant Sci 164:1–11Google Scholar
  46. Kramer EM, Su HJ, Wu CC, Hu JM (2006) A simplified explanation for the frameshift mutation that created a novel C-terminal motif in the APETALA3 gene lineage. BMC Evol Biol 6:30PubMedGoogle Scholar
  47. Kramer EM, Holappa L, Gould B, Jaramillo MA, Setnikov D, Santiago PM (2007) Elaboration of B gene function to include the identity of novel floral organs in the lower eudicot Aquilegia. Plant Cell 19:750–766PubMedGoogle Scholar
  48. Langlet O (1932) Uber Chromosomenverhältnisse und Systematik der Ranunculaceae. Svensk Bot Tidskr 26:381–400Google Scholar
  49. Lee JY, Baum SF, Oh SH, Jiang CZ, Chen JC, Bowman JL (2005) Recruitment of CRABS CLAW to promote nectary development within the eudicot clade. Development 132:5021–5032PubMedGoogle Scholar
  50. Lehmann NL, Sattler R (1994) Floral development and homeosis in Actaea rubra (Ranunculaceae). Int J Plant Sci 155:658–671Google Scholar
  51. Lehnebach CA, Cano A, Monsalve C, McLenachan P, Hörandl E, Lockhart P (2007) Phylogenetic relationships of the monotypic Peruvian genus Laccopetalum (Ranunculaceae). Plant Syst Evol 264:109–116Google Scholar
  52. Leinfellner W (1958) Beiträge zur Kronblattmorphologie. VIII. Der peltate Bau der Nektarblätter von Ranunculus, dargelegt an Hand jener von Ranunculus pallasii Schlecht. Plant Syst Evol 105:184–192Google Scholar
  53. Liou L (1980) Ranunculeae. In: Wang WC (ed) Flora Reipublicae Popularis Sinicae, vol 28. Science, Beijing, pp 241–345Google Scholar
  54. Lockhart P, McLenachan PA, Havell D, Glenny D, Huson D, Jensen U (2001) Phylogeny, dispersal and radiation of New Zealand alpine buttercups: molecular evidence under split decomposition. Ann Missouri Bot Gard 88:458–477Google Scholar
  55. Ovczinnikov PN (1937) Ranunculus. In: Komarow WA (ed) Flora URSS, vol VII., Ranales and RhoeadalesBotanicheskii Institut Akademii Nauk USSR, Moscow, pp 351–509Google Scholar
  56. Paun O, Lockhart P, Hörandl E, Lehnebach C, Johansson JT (2005) Phylogenetic relationships and biogeography of Ranunculus and allied genera (Ranunculaceae) in the Mediterranean region and in the European Alpine system. Taxon 54:911–930Google Scholar
  57. Payer JB (1857) Traité d’organogénie comparée de la fleur. Masson, ParisGoogle Scholar
  58. Prantl K (1887) Beiträge zur Morphologie und Systematik der Ranunculaceen. Bot Jahrb Syst 9:225–273Google Scholar
  59. Prantl K (1891) Ranunculaceae. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien III(2). Engelmann, Leipzig, pp 43–66Google Scholar
  60. Rasmussen DA, Kramer EM, Zimmer EA (2009) One size fits all? Molecular evidence for a commonly inherited petal identity program in the Ranunculales. Am J Bot 96:96–109PubMedGoogle Scholar
  61. Ren Y, Chang HL, Tian XH, Song P, Endress PK (2009) Floral development in Adonideae (Ranunculaceae). Flora 204:506–517Google Scholar
  62. Ren Y, Chang HL, Endress PK (2010) Floral development in Anemoneae (Ranunculaceae). Bot J Linn Soc 162:77–100Google Scholar
  63. Ren Y, Gu T-Q, Chang H-L (2011) Floral development of Dichocarpum, Thalictrum, and Aquilegia (Thalictroideae, Ranunculaceae). Plant Syst Evol 292:203–213Google Scholar
  64. Ro KE, Keener CS, Mcpheron BA (1997) Molecular phylogenetic study of the Ranunculaceae: utility of the nuclear 26S Ribosomal DNA in inferring intrafamilial relationships. Mol Phylogenet Evol 8:117–127PubMedGoogle Scholar
  65. Ronse De Craene LP, Smets EF (1995) Evolution of the androecium in the Ranunculiflorae. Plant Syst Evol 9(Suppl):63–70Google Scholar
  66. Ruijgrok HWL (1966) The distribution of ranunculin and cyanogenic compounds in the Ranunculaceae. In: Swain T (ed) Comparative phytochemistry. London and New York, pp 175–186Google Scholar
  67. Sattler R (1973) Organogenesis of flowers: a photographic text-atlas. University of Toronto Press, TorontoGoogle Scholar
  68. Schöffel K (1932) Untersuchungen über den Blütenbau der Ranunculaceae. Planta 17:315–371Google Scholar
  69. Song P, Tian X-H, Ren Y (2007) Floral morphogenesis of Caltha and Trollius (Ranunculaceae) and the systematic significance. Acta Bot Sin 45:769–782Google Scholar
  70. Staedler YM, Endress PK (2009) Diversity and lability of floral phyllotaxis in the pluricarpellate families of core Laurales (Gomortegaceae, Atherospermataceae, Siparunaceae, Monimiaceaea). Int J Plant Sci 170:522–550Google Scholar
  71. Stevens PF (2001) (onwards) Angiosperm phylogeny website. Version 9, June 2008 (and more or less continuously updated since).
  72. Tamura M (1962) Taxonomical and phylogenetical consideration of the Ranunculaceae. Acta Phytotax Geobot 20:71–81Google Scholar
  73. Tamura M (1967) Morphology, ecology and phylogeny of the Ranunculaceae. VII. Sci Rep Osaka Univ 16:35–42Google Scholar
  74. Tamura M (1972) Morphology and phyletic relationship of the Glaucidiaceae. Bot Mag Tokyo 85:29–41Google Scholar
  75. Tamura M (1984) Phylogenetical consideration of the Ranunculaceae. Korean J Plant Tax 14:33–42Google Scholar
  76. Tamura M (1993) Ranunculaceae. In: Kubitzki K, Rohwer JG, Bittrich V (eds) The families and genera of vascular plants, vol 2. Springer, Berlin, pp 563–583Google Scholar
  77. Tamura M (1995) Ranunculaceae. In: Hiepko P (ed) Die natürlichen Pflanzenfamilien, vol 17a (4), 2nd edn. Duncker und Humblot, Berlin, pp 1–555Google Scholar
  78. Tepfer SS (1953) Floral anatomy and ontogeny in Aquilegia formosa var. truncata and Ranunculus repens. Univ California Publ Bot 25:513–648Google Scholar
  79. The Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121Google Scholar
  80. Tucker SC, Hodges SC (2005) Floral ontogeny of Aquilegia, Semiaquilegia, and Enemion (Ranunculaceae). Int J Plant Sci 166:557–574Google Scholar
  81. Tutin TG, Cook CDK (1993) Ranunculus. In: Tutin TG, Heywood VH, Burges NA, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea I: Psilotaceae to Platanaceae, 2nd edn. Cambridge University Press, Cambridge, pp 269–290Google Scholar
  82. van Heel WA (1981) A SEM-investigation on the development of free carpels. Blumea 27:499–522Google Scholar
  83. van Heel WA (1984) Variation in the development of ascidiform carpels, a SEM-investigation. Blumea 29:443–452Google Scholar
  84. Wang W, Lu AM, Ren Y, Endress ME, Chen ZD (2009) Phylogeny and classification of Ranunculales: evidence from four molecular loci and morphological data. Perspect Plant Ecol Evol Syst 11:81–110Google Scholar
  85. Whittemore A (1997) Ranunculus. In: Flora of North America Committee (ed) Flora of North America North of Mexico, vol 3. Magnoliophyta: Magnoliidae and Hamamelidae, Oxford University Press, New York, pp 88–135Google Scholar
  86. Wu HY, Sun K, Cai ZW, Su X, Pang HL (2008) Floral organogenesis and development of Clematis fruticosa Turcz. (Ranunculaceae). Bull Bot Res 28:273–277Google Scholar
  87. Zhao L, Liu P, Che XF, Wang W, Ren Y (2011) Floral organogenesis of Helleborus and Nigella (Ranunculaceae) and its systematic significance. Bot J Linn Soc 166:431–443Google Scholar
  88. Zhao L, Wang W, Ren Y, Bachelier JB (2012) Floral development in Asteropyrum (Ranunculaceae): implication for its systematic position. Ann Bot Fenn 49Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Liang Zhao
    • 1
    • 2
  • Julien B. Bachelier
    • 3
    • 4
  • Hong-li Chang
    • 5
  • Xian-hua Tian
    • 1
  • Yi Ren
    • 1
  1. 1.College of Life SciencesShaanxi Normal UniversityXi’anChina
  2. 2.College of Life SciencesNorthwest A and F UniversityYanglingChina
  3. 3.Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUSA
  4. 4.Arnold Arboretum of Harvard UniversityBostonUSA
  5. 5.School of Life SciencesNorthwest UniversityXi’anChina

Personalised recommendations