Skip to main content
Log in

Genetic diversity within and between seedstock populations of several German autochthonous provenances and conventionally propagated nursery material of blackthorn (Prunus spinosa L.)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Genetic diversity within and between seedstocks of autochthonous provenances of common blackthorn (Prunus spinosa L.) from several locations in Germany was determined and compared with the diversity in conventionally propagated (German and Hungarian) seedstocks using a highly reproducible high-annealing-temperature random amplified polymorphic DNA (HAT-RAPD) protocol. Based on the distribution of 359 markers obtained with 11 primers we found relatively low genetic diversity in the studied autochthonous blackthorn populations (H 0 0.1182–0.1333), with the majority distributed within the populations (92.22%) and only 7.78% among them. Similar levels of diversity were also found in the conventional seedstocks. Accordingly, genetic differentiation among these populations is rather low (pairwise F st 0.0284–0.1266). In one case, we were not able to differentiate between an autochthonous population and conventional (F st 0.0284) one. We discuss the results with respect to German conservation laws and their practical implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albrecht H-J (2007) Zur Problematik der geforderten Verwendung autochthoner Gehölze. Beiträge zur Gehölzkunde. In: Bouffier VA, Gandert K-D (eds) Beiträge zur Gehölzkunde. Hansmann Verlag, Hemmingen, pp 30–34

    Google Scholar 

  • Arobba D, Caramiello R, Del Lucchese A (2003) Archaeobotanical investigations in Liguria: preliminary data on the early Iron Age at Monte Trabocchetto (Pietra Ligure, Italy). Veg Hist Archaeobot 12:253–262

    Article  Google Scholar 

  • Austerlitz F, Mariette S, Machon N, Gouyon PH, Godelle B (2000) Effects of colonization processes on genetic diversity: differences between annual plants and tree species. Genetics 154:1309–1321

    PubMed  CAS  Google Scholar 

  • BMVEL (Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft) (2003) Verwendung einheimischer Gehölze regionaler Herkunft für die freie Landschaft. Ein Beitrag zur Erhaltung und Förderung der biologischen Vielfalt. Selbstverlag, Bonn

  • BnatSchG (Gesetz über Naturschutz und Landschaftspflege) (2010) Bundesnaturschutzgesetz vom 29.07.2009, in Kraft getreten am 01.03.2010. BGBl I:2542

  • Britten HB (1996) Meta-analysis of the association between multilocus heterozygosity and fitness. Evolution 50:2158–2164

    Article  Google Scholar 

  • Bua-in S, Paisooksantivatana Y (2010) Study of clonally propagated cassumunar ginger (Zingiber montanum (Koenig) Link ex Dietr.) and its relation of wild Zingiber species from Thailand revealed by RAPD markers. Genet Res Crop Evol 57:405–414

    Article  CAS  Google Scholar 

  • Chundet R, Cutler RW, Tasanon M, Anuntalabhochai S (2007) Hybrid detection in lychee (Litchee chinensis Sonn.) cultivars using HAT-RAPD markers. ScienceAsia 33:307–311

    Article  CAS  Google Scholar 

  • Convention on biological diversity (1992) Secretariat of the convention on biological diversity. http://www.cbd.int/programmes/outreach/awareness/publications.shtml. Accessed 30 January 2011

  • Cottrell JE, Vaughan SP, Connolly T, Sing L, Moodley DJ, Russell K (2009) Contemporary pollen flow, characterization of the maternal ecological neighbourhood and mating patterns in wild cherry (Prunus avium L.). Heredity 103:118–128

    Article  PubMed  CAS  Google Scholar 

  • Datenbank Gefäßpflanzen (FlorKart) (2006) Bundesamt für Naturschutz und Zentralstelle für die Floristische Kartierung Deutschlands, Bonn. http://www.floraweb.de. Accessed 30 January 2011

  • Degen B, Caron H, Bandou E, Maggia L, Chevallier MH, Leveau A, Kremer A (2001) Fine-scale spatial genetic structure of eight tropical tree species as analysed by RAPDs. Heredity 87:497–507

    Article  PubMed  CAS  Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Donohue K, Hammond-Pyle E, Messiqua D, Heschel MS, Schmitt J (2001) Adaptive divergence in plasticity in natural populations of Impatiens capensis and its consequences for performance in novel habitats. Evolution 55:692–702

    Article  PubMed  CAS  Google Scholar 

  • Eimert K, Reutter G, Strolka B (2003) Fast and reliable verification of doubled-haploid status in Asparagus officinalis L. by stringent RAPD-PCR. J Agric Sci 141:73–78

    Article  CAS  Google Scholar 

  • Ewens WJ (1972) The sampling theory of selectively neutral alleles. Theor Pop Biol 3:87–112

    Article  CAS  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Fineschi S, Malvolti ME, Cannata F, Hattemer HH (eds) (1991) Biochemical markers in the population genetics of forest trees. SBP Scientific, The Hague

    Google Scholar 

  • Fineschi S, Salvini D, Turchini D, Pastorelli R, Vendramin GG (2005) Crataegus monogyna Jacq. and C. laevigata (Poir.) DC. (Rosaceae, Maloideae) display low level of genetic diversity assessed by chloroplast markers. Plant Syst Evol 250:187–196

    Article  CAS  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Frascaria N, Maggia L, Michaud M, Bousquet J (1993) The rbcL gene sequence from chestnut indicates a slow rate of evolution in the Fagaceae. Genome 36:668–671

    Article  PubMed  CAS  Google Scholar 

  • Frenz W, Hellenbroich T, Seitz B (eds) (2009) Anpflanzung von Gehölzen gebietseigener Herkünfte in der freien Landschaft–rechtliche und fachliche Aspekte der Vergabepraxis. BfN-Skripten, Bundesamt für Naturschutz, Bonn-Bad Godesberg

  • Fronia R (2009) Prüfung der Identität und Variabilität gebeietsheimischer und gebietsfremder Herkünfte von Prunus spinosa L. und Cornus sanguinea L. zur Verwendung in der freien Landschaft. Der Andere Verlag, Tönning, Lübeck, Marburg

  • FSaatG (Gesetz über forstliches Pflanz- und Saatgut) (1979) vom 26.07.1979. BGBI. I-1242

  • Garcia C, Jordano P, Godoy JA (2007) Contemporary pollen and seed dispersal in a Prunus mahaleb population: patterns in distance and direction. Mol Ecol 16:1947–1955

    Article  PubMed  CAS  Google Scholar 

  • Gupta M, Chyi Y-S, Romero-Severson J, Owen JL (1994) Amplification of DNA markers from evolutionarily diverse genomes using single primers of simple sequence repeats. Theor Appl Genet 89:998–1006

    Article  CAS  Google Scholar 

  • Hallden C, Hansen M, Nilsson N-O, Hjerdin A, Säll T (1996) Competition as a source of errors in RAPD analysis. Theor Appl Genet 93:1185–1192

    Article  CAS  Google Scholar 

  • Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing genetic diversity in woody plant species. New Forests 6:95–124

    Article  Google Scholar 

  • Harisankar P, Pillai SV, Sumarani GO, Sundaresan S (2002) Isozyme and RAPD analysis of cassava germplasm identification of duplicates in exotic collection. Plant Cell Biotechnol Mol Biol 3:21–28

    Google Scholar 

  • Jaccard P (1901) Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines. Bull Soc Vaud Sci Nat 37:241–272

    Google Scholar 

  • Jackson S, Chen ZJ (2010) Genomics and expression plasticity. Curr Opinion Plant Biol 13:153–159

    Article  CAS  Google Scholar 

  • Jones A, Hayes M, Sackville Hamilton N (2001) The effect of provenance on the performance of Crataegus monogyna in hedges. J Appl Ecol 38:952–962

    Article  Google Scholar 

  • Jordano P, Godoy JA (2000) RAPD variation and population genetic structure in Prunus mahaleb (Rosaceae), an animal-dispersed tree. Mol Ecol 9:1293–1305

    Article  PubMed  CAS  Google Scholar 

  • Jürgens AH, Seitz B, Kowarik I (2007) Genetic differentiation of Rosa canina (L.) at regional and continental scales. Pl Syst Evol 269:39–53

    Article  Google Scholar 

  • Kamm U, Rotach P, Gugerli F, Siroky M, Edwards P, Holderegger R (2009) Frequent long-distance gene flow in a rare temperate forest tree (Sorbus domestica) at the landscape scale. Heredity 103:476–482

    Article  PubMed  CAS  Google Scholar 

  • Karg S, Markle T (2002) Continuity and changes in plant resources during the Neolithic period in western Switzerland. Veg Hist Archaeobot 11:169–176

    Article  Google Scholar 

  • Karnitsch P (1953) Fundberichte im Jahrbuch der Stadt Linz 1951. Pro Austria Romana 3:26

    Google Scholar 

  • Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738

    PubMed  CAS  Google Scholar 

  • Kowarik I, Seitz B (2003) Perspektiven für die Verwendung gebietseigener („autochthoner“) Gehölze. Neobiota 2:3–26

    Google Scholar 

  • Kultur S (2007) Medicinal plants used in Kirklareli Province (Turkey). J Ethnopharm 111:341–364

    Article  Google Scholar 

  • Lee S-W, Ledig FT, Johnson DR (2006) Genetic variation at allozyme and RAPD markers in Pinus Longaeva (Pinaceae) of the White Mountains, California. Am J Bot 89:566–577

    Article  Google Scholar 

  • Leinemann L, Bendixen K, Kownatzki D, Hattemer HH, Liepe K, Stenger G (2002) Genetische Untersuchungen an Landschaftsgehölzen im Hinblick auf die Erzeugung und Zertifizierung von Vermehrungsgut. Allg Forst- und Jagdzeitung 173:146–152

    Google Scholar 

  • Li H, Zhang Z (2007) Effects of mast seeding and rodent abundance on seed predation and dispersal by rodents in Prunus armeniaca (Rosaceae). Forest Ecol Manag 242:511–517

    Article  Google Scholar 

  • Lodhi MA, Ye G-N, Weeden NF, Reisch BI (1994) A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Mol Biol Rep 12:6–13

    Article  CAS  Google Scholar 

  • Lowe A, Harris S, Ashton P (2008) Ecological genetics: design, analysis, and application. Blackwell, Malden

    Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99

    Article  PubMed  CAS  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    PubMed  CAS  Google Scholar 

  • Martin L, Jacomet S, Thiebault S (2008) Plant economy during the Neolithic in a mountain context: the case of “Le Chenet des Pierres” in the French Alps (Bozel-Savoie, France). Veg Hist Archaeobot 17:113–122

    Article  Google Scholar 

  • Matyas G, Bonfils P, Sperisen C (2002) Autochthon oder allochthon? Ein molekulargenetischer Ansatz am Beispiel der Eichen (Quercus spp.) in der Schweiz. Schweiz Z Forstwes 153:91–96

    Article  Google Scholar 

  • McConkey KR, Meehan HJ, Drake DR (2004) Seed dispersal by Pacific pigeons (Ducula pacifica) in Tonga, Western Polynesia. Emu 104:369–376

    Article  Google Scholar 

  • Meynen E, Schmithüsen J (eds) (1953–1962) Handuch der naturräumlichen Gliederung Deutschlands, Selbstverlag der Bundesanstalt für Landeskunde, Bad Godesberg

  • Micales JA, Bonde MR (1995) Isozymes: methods and applications. In: Singh US, Singh RP (eds) Molecular methods in plant pathology. CRC, Boca Raton

    Google Scholar 

  • Miller MP (1997) Tools for Population Genetic Analysis. Version 1.3. Department of Biological Sciences, Northern Arizona University, Flagstaff. http://www.marksgeneticsoftware.net. Retrieved Dec 2002

  • Mitton JB (1994) Molecular approaches to population biology. Annu Rev Ecol Syst 25:45–69

    Article  Google Scholar 

  • Mohanty A, Martín JP, Aguinagalde I (2000) Chloroplast DNA diversity within and among populations of the allotetraploid Prunus spinosa L. Theor Appl Genet 100:1304–1310

    Article  CAS  Google Scholar 

  • Mohanty A, Martín JP, Aguinagalde I (2002) Population genetic analysis of European Prunus spinosa (Rosaceae) using chloroplast DNA markers. Am J Bot 89:1223–1228

    Article  PubMed  CAS  Google Scholar 

  • Monteleone I, Ferrazzini D, Belletti P (2006) Effectiveness of neutral RAPD markers to detect genetic divergence between the subspecies uncinata and mugo of Pinus mugo Turra. Silva Fennica 40:391–406

    Google Scholar 

  • Mukherjee AK, Acharya L, Panda PC, Mohapatra T, Das P (2006) Assessment of genetic diversity in 31 species of mangroves and their associates through RAPD and AFLP markers. Z Naturforsch 61:413–420

    CAS  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  CAS  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155

    Article  PubMed  CAS  Google Scholar 

  • Palme AE, Vendramin GG (2002) Chloroplast DNA variation, postglacial recolonization and hybridization in hazel, Corylus avellana. Mol Ecol 11:1769–1780

    Article  PubMed  CAS  Google Scholar 

  • Pardo-de-Santayana M, Tardio J, Blanco E, Carvalho AM, Lastra JJ, San Miguel E, Morales R (2007) Traditional knowledge of wild edible plants used in the northwest of the Iberian Peninsula (Spain and Portugal): a comparative study. J Ethnobiol Ethnomed 3:27

    Article  PubMed  Google Scholar 

  • Pearson Karl (1901) On lines and planes of closest fit to a system of points in space. Lond Edinb Dublin Philos Mag J Sci 6:559–572

    Google Scholar 

  • Persson H, Widen B, Andersson S, Svensson L (2004) Allozyme diversity and genetic structure of marginal and central populations of Corylus avellana L. (Betulaceae) in Europe. Pl Syst Evol 244:157–179

    Article  Google Scholar 

  • Petit RJ, Aguinagalde I, de Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Muller-Starck GM, Demesure-Musch B, Palme A, Martin JP, Rendell S, Vendramin GG (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565

    Article  PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283

    Article  Google Scholar 

  • Ruangsuttapha S, Eimert K, Schoder MB, Silayoi B, Denduangborinpat J, Kanchanapoom K (2007) Molecular phylogeny of banana cultivares on HAT-RAPD. Gen Res Crop Evol 54:1565–1572

    Article  CAS  Google Scholar 

  • Rumpf H (2003) Welche Erkenntnisse aus der forstlichen Generhaltung können bei der Anzucht gebietseigener (“autochthoner”) Sträucher genutzt werden? Neobiota 2:37–42

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sambatti JBM, Martins PS, Ando A (2001) Folk taxonomy and evolutionary dynamics of cassava: a case study in Ubatuba, Brazil. Econ Botany 55:93–105

    Article  Google Scholar 

  • Schlüter PM, Harris SA (2006) Analysis of multilocus fingerprinting data sets containing missing data. Mol Ecol Notes 6:569–572

    Article  Google Scholar 

  • Schmidt PA, Krause A (1997) Zur Abgrenzung von Herkunftsgebieten bei Baumschulgehölzen für die freie Landschaft. Natur und Landschaft 72:92–95

    Google Scholar 

  • Schütt P, Schuck HJ, Stimm B (eds) (1992) Lexikon der Forstbotanik. Verlag Hüthig, Jehle Rehm, Heidelberg

  • Seitz B (2003) Erfassung gebietseigener Gehölzvorkommen. Neobiota 2:81–93

    Google Scholar 

  • Sokal R (1979) Testing statistical significance of geographic variation patterns. Syst Zool 28:227–232

    Article  Google Scholar 

  • Soltis PS, Soltis DE (2000) The role of genetic and genomic attributes in the success of polyploids. Proc Natl Acad Sci USA 97:7051–7057

    Article  PubMed  CAS  Google Scholar 

  • Spethmann W (1995) Autochthone Gehölze. Deutsche Baumschule 3:137

    Google Scholar 

  • Spethmann W (2003) Wie können Saatguthandel und Baumschulen einen Beitrag zur Erhaltung der Biodiversität einheimischer Sträucher leisten? Neobiota 2:27–35

    Google Scholar 

  • Vollrath B (2004) Autochthonie im praxistest. Neue Landschaft 8:31–35

    Google Scholar 

  • Watterson GA (1977) Heterosis or neutrality? Genetics 85:789–814

    PubMed  CAS  Google Scholar 

  • Weir BS (1996) Genetic data analysis II: methods for discrete population genetic data. Sinauer Associates, Sunderland

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Williams JGK, Kubelik ARK, Livak JL, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by random primers are useful as genetic markers. Nucl Acid Res 18:6531–6535

    Article  CAS  Google Scholar 

  • Winkworth RC, Donoghue M (2005) Viburnum phylogeny based on combined molecular data: implications for taxonomy and biogeography1. Am J Bot 92:653–666

    Article  PubMed  CAS  Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    Article  PubMed  CAS  Google Scholar 

  • Wörz A, Engelhardt M, Hölzer A, Thiv M (2008) Aktuelle Verbreitungskarten der Farn- und Blütenpflanzen Baden-Württembergs, Stuttgart. http://www.flora.naturkundemuseum-bw.de. Accessed 30 January 2011

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    PubMed  CAS  Google Scholar 

  • Yeh FC, Boyle TJB (1997) POPGENE, Version 1.32. Department of Renewable Resources, University of Alberta, Edmonton, Alberta. http://www.ualberta.ca/~fyeh/popgene_info.html (Retrieved Dec 2002)

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has in part been developed through funding from Hochschule RheinMain University of Applied Sciences Wiesbaden Rüsselsheim Geisenheim (grant FHW-Nr. 40130130). We are thankful to the Interdisciplinary Research Group “Arbeitskreis Autochthone Gehölze” (Untere Flurbereinigungsbehörden Eltville und Fulda; Hessisches Landesamt für Bodenmanagement und Geoinformation—Dezernat Flurneuordnung; Hochschule Ostwestfalen-Lippe/Höxter, University of Applied Sciences; Hochschule RheinMain University of Applied Sciences Wiesbaden Rüsselsheim Geisenheim, Geisenheim Research Center) for access to the plant material. We are grateful to Mrs. Hüwe for excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Eimert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1178 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eimert, K., Rückert, FE. & Schröder, MB. Genetic diversity within and between seedstock populations of several German autochthonous provenances and conventionally propagated nursery material of blackthorn (Prunus spinosa L.). Plant Syst Evol 298, 609–618 (2012). https://doi.org/10.1007/s00606-011-0570-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-011-0570-8

Keywords

Navigation