Skip to main content
Log in

The mechanism of stamen movement in Chimonanthus praecox (Calycanthaceae): differential cell growth rates on the adaxial and abaxial surfaces of filaments after flower opening

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

In flowers of Chimonanthus (Calycanthaceae), stamen movements have been known for 150 years. Stamens are initially recurved when flowers open. Subsequently, within approximately 48 h, the stamens gradually turn upright and eventually enclose the gynoecium. However, the exact mechanism involved in this process is still unresolved. In this study, we found that in recurved stamens at the female stage the cell lengths in the epidermal and hypodermal tissue of the abaxial surfaces were significantly smaller than those of the adaxial surfaces. In erect stamens, however, no significant difference in cell length between the hypodermal tissues of both surfaces was found. Although the difference in cell length between the epidermal tissues for erect stamens was significant, it was smaller than that in recurved filaments. We found no variations in cell number between the epidermal tissues or between the hypodermal tissues among recurved and erect stamens. Thus, we conclude that in Chimonanthus the differential cell growth rates between the adaxial and abaxial surfaces of filaments could account for the gradual inward stamen movement following flower opening rather than cell division. Furthermore, application of indole-3-acetic acid (IAA) and gibberellic acid (GA3) to intact flowers in vitro or the wounding of stigmas significantly promoted the stamen erection rate. Surprisingly, we did not observe any effect on this movement following hand-pollination. Different patterns of stamen movement in Calycanthaceae and their implications for reproductive biology are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Azuma H, Toyota M, Asakawa Y (2005) Floral scent chemistry and stamen movement of Chimonanthus praecox (L.) Link (Calycanthaceae). Acta Phytotax Geobot 56:197–201

    Google Scholar 

  • Bennett AW (1869) On the fertilisation of winter-flowering plants. Nature 1:11–13

    Article  Google Scholar 

  • Bialczyk J, Lechowski Z (1988) The seismonastic movements of plant organs. Wiad Bot 32:209–226

    Google Scholar 

  • Blake ST (1972) Idiospermum (Idiospermaceae), a new genus and family for Calycanthus australiensis. Contrib Queensland Herb 12:1–39

    Google Scholar 

  • Cheng WC, Chang SY (1963) Calycanthus chinensis section Sinocalycanthus. Sci Silvae 8:1–2

    Google Scholar 

  • Cowan AK, Taylor NJ, van Staden J (2005) Hormone homeostasis and induction of the small-fruit phenotype in ‘Hass’ avocado. Plant Growth Regul 45:11–19

    Article  CAS  Google Scholar 

  • Cruden RW, Hermann-Parker SM (1977) Temporal dioecism: an alternative to dioecism? Evolution 31:863–866

    Article  Google Scholar 

  • Dickison WC (1990) A study of the floral morphology an anatomy of the Caryocaraceae. Bull Torrey Bot Club 117:123–137

    Article  Google Scholar 

  • Edwards J, Whitaker D, Klionsky S, Laskowski MJ (2005) A record-breaking pollen catapult. Nature 435:164

    Article  PubMed  CAS  Google Scholar 

  • Endress PK (1984) The role of inner staminodes in the floral display of some relic Magnoliales. Plant Syst Evol 146:269–282

    Article  Google Scholar 

  • Endress PK (2010) The evolution of floral biology in basal angiosperms. Phil Trans R Soc B 365:411–421

    Article  PubMed  Google Scholar 

  • Grant V (1950) The pollination of Calycanthus occidentalis. Am J Bot 37:294–297

    Article  Google Scholar 

  • Greyson RI (1994) The development of flowers. Oxford University Press, Oxford

    Google Scholar 

  • Heywood VH (1978) Flowering plants of the world. Oxford University Press, Oxford

    Google Scholar 

  • Knuth P, Loew E (1899) Handbuch der Blütenbiologie, vol 2. Engelmann, Leipzig

    Google Scholar 

  • Koevenig JL (1973) Floral development and stamen filament elongation in Cleome hassleriana. Am J Bot 60:122–129

    Article  Google Scholar 

  • Koning RE (1983) The role of auxin, ethylene, and acid growth in filament elongation in Gaillardia grandiflora (Asteraceae). Am J Bot 70:602–610

    Article  CAS  Google Scholar 

  • Koning RE, Raab MM (1987) Parameters of filament elongation in Ipomoea nil (Convolvulaceae). Am J Bot 74:510–516

    Article  CAS  Google Scholar 

  • Lechowski Z, Bialczyk J (1992) Effect of external calcium on the control of stamen movement in Berberis vulgaris L. Biol Plantarum 34:121–130

    Article  CAS  Google Scholar 

  • Li J, Ledger J, Ward T, del Tredici P (2004) Phylogenetics of Calycanthaceae based on molecular and morphological data with a special reference to divergent paralogues of the nrDNA ITS region. Harv Pap Bot 9:69–82

    Google Scholar 

  • Li YJ, Pang XL, Si HQ, Wang HY, Li D (2007) Observing and analyzing the blossom and fragrance habits of Jing Guan’s Chimononthus praecox (Linn.) Link. J Southwest China Norm Univ (Nat Sci) 32:115–119. (In Chinese)

    Google Scholar 

  • Liu KW, Liu ZJ, Huang LQ, Li LQ, Chen LJ, Tang GD (2006) Self-fertilization strategy in an orchid. Nature 441:945

    Article  PubMed  CAS  Google Scholar 

  • Lobelo G, Fambrini M, Baraldi R, Lercari B, Pugliesi C (2000) Hormonal influence on photocontrol of the protandry in the genus Helianthus. J Exp Bot 51:1403–1412

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nagy ES, Strong L, Galloway LF (1999) Contribution of delayed autonomous selfing to reproductive success in Mountain Laurel, Kalmia latifolia (Ericaceae). Am Midl Nat 142:39–46

    Article  Google Scholar 

  • Nicely KA (1965) A monographic study of the Calycanthaceae. Castanea 30:38–81

    Google Scholar 

  • Prance CT, Da Silva MF (1973) A monograph of the Caryocaraceae. F1. Neotropica Monogr. 12. Hafner Press, New York, pp 1–75

    Google Scholar 

  • Ren MX (2010) Stamen movements in hermaphroditic flowers: diversity and adaptive significance. Chinese J Plant Ecol 34:867–875 (In Chinese)

    Google Scholar 

  • Schlindwein C, Wittmann D (1997) Stamen movement in flowers of Opuntia (Cactaceae) favour oligolectic pollinators. Plant Syst Evo 204:179–193

    Article  Google Scholar 

  • Sheng AW, Guo WM, Sun ZH (1999) Study on dynamics of endogenous hormones and parameters concerned senescence in cut wintersweet flowers. J Beijing For Univ 21:48–53 (In Chinese)

    Google Scholar 

  • Song JD, Lee DH, Rhew TH, Lee CH (2003) Wound-induced expression of ACC synthase genes in etiolated Mung Bean hypocotyls. J Plant Biol 46:199–203

    Article  CAS  Google Scholar 

  • Staedler YM, Weston PH, Endress PK (2007) Floral phyllotaxis and floral architecture in Calycanthaceae (Laurales). Int J Plant Sci 168:285–306

    Article  Google Scholar 

  • Staedler YM, Weston PH, Endress PK (2009) Comparative gynoecium structure and development in Calycanthaceae (Laurales). Int J Plant Sci 170:21–41

    Article  Google Scholar 

  • Sui SZ (2006) Analysis of expressed sequence tags (ESTs) from Chimonanthus praecox Link flower and isolation and function analysis of Cplectin gene [D], Southwest University, Chongqing (In Chinese)

  • Tashiro S, Tian CE, Watahiki MK, Yamamoto KT (2009) Changes in growth kinetics of stamen filaments cause inefficient pollination in massugu2, an auxin insensitive, dominant mutant of Arabidopsis thaliana. Physiol Plant 137:175–187

    Article  PubMed  CAS  Google Scholar 

  • Taylor PE, Card G, House J, Dickinson MH, Flagan RC (2006) High-speed pollen release in the white mulberry tree, Morus alba L. Sex Plant Reprod 19:19–24

    Article  Google Scholar 

  • Wang XF, Tan YY, Chen JH, Lu YT (2006) Pollen tube reallocation in two preanthesis cleistogamous species, Ranalisma rostratum and Sagittaria guyanensis ssp. lappula (Alismataceae). Aquat Bot 85:233–240

    Article  Google Scholar 

  • Weigend M, Gottschling M (2006) Evolution of funnel-revolver flowers and ornithophily in Nasa (Loasaceae). Plant Biol 8:120–142

    Article  PubMed  CAS  Google Scholar 

  • Wen J (1999) Evolution of eastern Asian and eastern North American disjunct pattern in flowering plants. Annu Rev Ecol Syst 30:421–455

    Article  Google Scholar 

  • Wilson CL (1976) Floral anatomy of Idiospermum australiense (Idiospermaceae). Am J Bot 63:987–996

    Article  Google Scholar 

  • Worboys SJ (1998) Pollination processes and population structure of Idiospermum australiense (Diels) S.T. Blake, a primitive tree of the Queensland wet Tropics. MSc thesis. James Cook University of North Queensland

  • Worboys SJ, Jackes BR (2005) Pollination processes in Idiospermum australiense (Calycanthaceae), an arborescent basal angiosperm of Australia’s tropical rain forest. Plant Syst Evol 251:107–117

    Article  Google Scholar 

  • Wu CL, Hu NZ (1995) Studies on the flower form and blooming characteristics of the wintersweet. Acta Horticult Sin 22:277–282 (In Chinese)

    Google Scholar 

  • Yu YB, Yang SF (1980) Biosynthesis of wound ethylene. Plant Physiol 66:281–285

    Article  PubMed  CAS  Google Scholar 

  • Yu JQ, Li Y, Qian YR, Zhu ZJ (2001) Changes of endogenous hormone level in pollinated and N-(2-chloropyridyl)-N′–phenylurea (CPPU)-induced parthenocarpic fruits of Lagenaria leucantha. J Hort Sci Biotechnol 76:231–234

    CAS  Google Scholar 

  • Zhou LH, Hao RM, Wu JZ, Mao ZB (2003) Pollination biology of Chimonanthus nitens Oliv. Acta Horticult Sin 30:690–694 (In Chinese)

    Google Scholar 

  • Zhou LH, Hao RM, Wu JZ (2006a) The pollination biology of Chimonanthus praecox (L.) Link (Calycanthaceae). Acta Horticult Sin 33:323–327 (In Chinese)

    Google Scholar 

  • Zhou SL, Renner SS, Wen J (2006b) Molecular phylogeny and intra- and inter-continental biogeography of Calycanthaceae. Mol Phylogenet Evol 39:1–15

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Professor Peter K. Endress (University of Zurich, Switzerland) and two anonymous reviewers for their valuable and inspiring comments on the manuscript. This work is supported by the National Natural Science Foundation of China (grant no. 30970194).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Fan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Du, W., Qin, KZ. & Wang, XF. The mechanism of stamen movement in Chimonanthus praecox (Calycanthaceae): differential cell growth rates on the adaxial and abaxial surfaces of filaments after flower opening. Plant Syst Evol 298, 561–567 (2012). https://doi.org/10.1007/s00606-011-0566-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-011-0566-4

Keywords

Navigation