Skip to main content
Log in

Chromatin differentiation between Vigna radiata (L.) R. Wilczek and V. unguiculata (L.) Walp. (Fabaceae)

  • Short Communication
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

A comparative chromosomal evaluation was carried out between Vigna unguiculata (cowpea) and V. radiata (mung bean) with chromomycin A3 (CMA3)/4’,6-diamidino-2-phenylindole (DAPI) banding and fluorescent in situ hybridization (FISH) using 5S/45S ribosomal DNA (rDNA) probes. Both species had symmetric karyotypes (2n = 22), with prevalence of centromeres in chromosomes at median (m) and submedian (sm) regions and chromosomes ranging in size from 2.1 to 1.25 μm (V. unguiculata) and 2.18 to 0.93 μm (V. radiata). Three different banding patterns were identified for V. unguiculata: CMA +3 /DAPI0, CMA ++3 /DAPI, and CMA +3 /DAPI. The CMA +3 /DAPI0 bands were observed in the pericentromeric regions of all chromosomes, while the CMA ++3 /DAPI and CMA +3 /DAPI bands were co-localized with the 45S rDNA in the subtelomeric position (chromosomes B, G, and D, J, respectively) and in the proximal position in chromosome F. Two pairs of chromosomes (D and I) bearing interstitial 5S rDNA have been also identified. Vigna radiata displayed CMA 03 /DAPI+ bands distributed in the centromeric region of chromosomes B, C, and F, while CMA ++3 /DAPI bands were co-localized with the 45S rDNA sites in the subtelomeric position of the short arm in the F and K chromosome pairs. Three pairs of 5S rDNA sites were identified, the first in the proximal region of the long arm in chromosome E and the two others in the proximal and subterminal positions in the long arm of chromosome J. These data highlight some divergences regarding the amount and composition of the heterochromatin in both species, allowing the identification of individual chromosomes in V. unguiculata and V. radiata, and a comparison with other members of the Phaseoloid clade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Adetula OA (2006) Comparative study of the karyotypes of two Vigna subspecies. Afr J Biotech 5:563–565

    CAS  Google Scholar 

  • Almeida C, Pedrosa-Harand A (2011) Contrasting rDNA evolution in lima bean (Phaseolus lunatus L.) and common bean (P. vulgaris L., Fabaceae). Cytogenet Genome Res 132:212–217

    Article  PubMed  CAS  Google Scholar 

  • Almeida CCS (2006) Mapeamento físico e análise evolutiva em Phaseolus vulgaris L. e P. lunatus L., utilizando hibridização in situ fluorescente (FISH). Doctoral thesis, Federal University of Pernambuco, Recife, Brazil

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Barros e Silva AE, Guerra M (2009) The meaning of DAPI bands observed after C-banding and FISH procedures. Biotech Histochem 85:115–125

    Article  Google Scholar 

  • Ehlers JD, Hall A (1997) Cowpea (Vigna unguiculata L. Walp.). Field Crop Res 53:187–204

    Article  Google Scholar 

  • Galasso I, Pignone D, Perrino P (1992) Cytotaxonomic studies in Vigna I. General technique and Vigna unguiculata C-banding. Caryologia 45:155–161

    Google Scholar 

  • Galasso I, Pignone D, Perrino P (1993) Cytotaxonomic studies in Vigna. II. Heterochromatin characterization in Vigna unguiculata and three related wild species. Caryologia 46:275–282

    Google Scholar 

  • Galasso I, Schmidt T, Pignone D, Heslop-Harrison JS (1995) The molecular cytogenetics of Vigna unguiculata (L.) Walp: the physical organization and characterization of 18S-5, 8S–25S rRNA genes, 5S rRNA genes, telomere-like sequences, and a family of centromeric repetitive DNA sequences. Theor Appl Genet 91:928–935

    Article  CAS  Google Scholar 

  • Galasso I, Saponetti LS, Pignone D (1998) Cytotaxonomic studies in Vigna. IV. Variation of the number of active and silent rDNA sites in Vigna unguiculata populations. Caryologia 51:95–104

    Google Scholar 

  • Guerra M, Kenton A, Bennett MD (1996) rDNA sites in mitotic and polytene chromosomes of Vigna unguiculata (L.) Walp. and Phaseolus coccineus L. revealed by fluorescent in situ hybridization. Ann Bot 78:157–161

    Article  CAS  Google Scholar 

  • Fonsêca AFA, Ferreira J, Santos TRB, Mosiolek M, Bellucci E, Kami J, Gepts P, Geffroy V, Schweizer D, Santos KGB, Pedrosa-Harand A (2010) Cytogenetic map of common bean (Phaseolus vulgaris L.). Chromosome Res 18:487–502

    Article  PubMed  Google Scholar 

  • Hanson RE, Islam-Faridi MN, Percival EA, Crane CF, Ji Y, McKnight TD, Stelly DM, Price HJ (1996) Distribution of 5S and 18S–28S rDNA loci in a tetraploid cotton (Gossypium hirsutum L.) and its putative diploid ancestors. Chromosoma 105:55–61

    Article  PubMed  CAS  Google Scholar 

  • Heslop-Harrison JS, Schwazarcher T, Anamthawat-Jónsson K, Leitch AR, Shi M (1991) In situ hybridization with automated chromosome denaturation. Technique 3:109–115

    Google Scholar 

  • Khattak GSS, Wolny E, Saeed I (2007) Detection of ribosomal DNA sites in chickpea (Cicer arietinum L.) and mungbean (Vigna radiata (L.) Wiltzek) by fluorescence in situ hybridization. Pak J Bot 39:1511–1515

    Google Scholar 

  • Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220

    Article  Google Scholar 

  • Lin JY, Jacobus BH, SanMiguel P, Walling JG, Yuan Y, Shoemaker RC, Young ND, Jackson SA (2005) Pericentromeric regions of soybean (Glycine max L. Merr.) chromosomes consist of retroelements and tandemly repeated DNA and are structurally and evolutionarily labile. Genetics 170:1221–1230

    Article  PubMed  CAS  Google Scholar 

  • Marechal R, Mascherpa JM, Stainier F (1978) Étude taxonomique d’un groupe complexe d’espèces de genres Phaseolus et Vigna (Papilionaceae) sur la base de donneés morphologiques et polliniques, traitées par l’analyse informatique. Boissiera 28:1–273

    Google Scholar 

  • Mondin M, Santos-Serejo JA, Aguiar-Perecin MLR (2007) Karyotype characterization of Crotalaria juncea (L.) by chromosome banding and physical mapping of 18S–5.8S–26S and 5S rRNA gene sites. Genet Mol Biol 30:65–72

    Article  CAS  Google Scholar 

  • Pedrosa A, Jantsch MF, Moscone EA, Ambros PF, Schweizer D (2001) Characterization of pericentromeric and sticky intercalary heterochromatin in Ornithogalum longibracteatum (Hyacinthaceae). Chromosoma 110:203–213

    Article  PubMed  CAS  Google Scholar 

  • Pedrosa A, Sandal N, Stougaard J, Schweizer D, Bachmair A (2002) Chromosomal map of the model legume Lotus japonicus. Genetics 161:1661–1672

    PubMed  CAS  Google Scholar 

  • Pedrosa-Harand A, Almeida CCS, Mosiolek M, Blair MW, Schweizer D, Guerra M (2006) Extensive ribosomal DNA amplification during Andean common bean (Phaseolus vulgaris L.) evolution. Theor Appl Genet 112:924–933

    Article  PubMed  CAS  Google Scholar 

  • Schweizer D, Ambros PF (1994) Chromosome banding. In: Gosden JR (ed) Methods in molecular biology, vol 29. Humana, Totowa, pp 97–112

    Google Scholar 

  • Silva SMS, Freire‐Filho FR (1999) Proteínas de feijão-caupi (Vigna unguiculata (L.) Walp.): Caracterização e aplicação nutricional. Embrapa Documentos 44:5–20

    Google Scholar 

  • Tek AL, Kashihara K, Murata M, Nagaki K (2010) Functional centromeres in soybean include two distinct tandem repeats and a retrotransposon. Chromosome Res 18:337–347

    Article  PubMed  CAS  Google Scholar 

  • Wander AL (2005) Cultivo do feijão irrigado na região noroeste de Minas Gerais. http://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Feijao/FeijaoIrrigadoNoroesteMG/index.htm. Retrieved 4 May 2005

  • Wanzenböck EM, Schöfer C, Schweizer D, Bachmair A (1997) Ribosomal transcription units integrated via T-DNA transformation associate with the nucleolus and do not require upstream repeat sequences for activity in Arabidopsis thaliana. Plant J 11:1007–1016

    Article  PubMed  Google Scholar 

  • Zheng JY, Nakata M, Uchiyama H, Morikawa H, Tanaka R (1991) Giemsa C-banding patterns in several species of Phaseolus L. and Vigna Savi, Fabaceae. Cytologia 56:459–466

    Article  Google Scholar 

  • Zheng JY, Nakata M, Irifune K, Tanaka R, Morikawa H (1993) Fluorescent banding pattern analysis of eight taxa of Phaseolus and Vigna in relation to their phylogenetic relationships. Theor Appl Genet 87:38–43

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the program RENORBIO (Rede Nordeste de Biotecnologia) and also FINEP (Financiadora de Estudos e Projetos), CNPq (Conselho Nacional de Desenvolvimento Científico and Tecnológico), BNB (Banco Nordeste do Brasil), and FACEPE (Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Christina Brasileiro-Vidal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de A. Bortoleti, K.C., Benko-Iseppon, A.M., de Melo, N.F. et al. Chromatin differentiation between Vigna radiata (L.) R. Wilczek and V. unguiculata (L.) Walp. (Fabaceae). Plant Syst Evol 298, 689–693 (2012). https://doi.org/10.1007/s00606-011-0551-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-011-0551-y

Keywords

Navigation