Advertisement

Plant Systematics and Evolution

, Volume 298, Issue 1, pp 139–146 | Cite as

Ploidy level and genome size of locally adapted populations of Silene ciliata across an altitudinal gradient

  • Alfredo García-FernándezEmail author
  • José M. Iriondo
  • Joan Vallès
  • Juan Orellana
  • Adrián Escudero
Original Article

Abstract

Silene ciliata Poiret is a small perennial that presents several ploidy levels and inhabits the mountain ranges of the European Mediterranean basin. Recent studies have shown evidence of local adaptation in populations located across an altitudinal gradient in Sierra de Guadarrama (Central Spain) at the species’ southernmost distribution limit. In this study, we assessed whether the existence of local adaptation in these populations was related to differences in karyological features (ploidy level or chromosome number modification) or in nuclear DNA amount. Optical microscope (phase contrast and epifluorescence after DAPI staining) and flow cytometry were used to estimate the ploidy level and genome size of several family lines in three populations across the altitude gradient. With a sampling three times higher than usual in genome size assessments, all individuals showed a constant diploid set (2n = 24), so that polyploidy or other chromosome number modifications were discarded. The small genome size found (mean ± SD; 2C = 1.76 ± 0.06 pg) was within the range of those found in other Silene species. Significant differences in genome size were found when the three populations of S. ciliata were compared. The largest genome size found at the intermediate population may be associated to lower environmental stress at the mid elevation, in line with the recent studies in this area.

Keywords

Altitude gradient Genome size Ploidy level Silene ciliata 

Notes

Acknowledgments

We thank the technical staff the Serveis Cientificotècnics Generals, Universitat de Barcelona, for their support with the flow cytometry analysis, Spencer C. Brown (Centre National de la Reserche Scientifique, Gif-sur-Yvette, France) for providing us with the internal standard, and Teresa Garnatje (Institut Botànic de Barcelona, CSIC-ICUB) and two anonymous referees for the comments on a draft of this paper. We also thank the staff of Parque Natural de las Cumbres, Circo y Lagunas de Peñalara for permission to work in the field area and Lori De Hond for linguistic assistance. This work was supported by the ISLAS (CGL2009-13190-C03-02), LIMITES (CGL2009-07229), Asteraceae VI (CGL2010-22234-C02-02) and REMEDINAL2 projects. A. G-F held a Formación Personal Investigador fellowship (CGL2006-09431/BOS).

References

  1. Baldwin JTJ (1941) Galax: the genus and its chromosomes. J Hered 32:231–236Google Scholar
  2. Barthlott W, Lauer W, Placke A (1996) Global distribution of species diversity in vascular plants: towards a world map of phytodiversity. Erdkunde 50:317–327CrossRefGoogle Scholar
  3. Bennett MD (1998) Plant genome values: how much do we know? PNAS 95(5):2011–2016PubMedCrossRefGoogle Scholar
  4. Bennett MD, Leitch IJ (2005) Plant genome size research: a field in focus. Ann Bot 95(1):1–6PubMedCrossRefGoogle Scholar
  5. Bennett M, Leitch IJ (2010) Angiosperm DNA C-values database. http://data.kew.org/cvalues/CvalServlet?querytype=1
  6. Bennett MD, Leitch IJ (2011) Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Ann Bot 107(3):467–590Google Scholar
  7. Blackburn KB (1933) On the relation between geographic races and polyploidy in Silene ciliata pourr. Genetica 15(1):49–66CrossRefGoogle Scholar
  8. Brochmann C, Gabrielsen TM, Nordal I, Landvik JY, Elven R (2003) Glacial survival or tabula rasa? The history of North Atlantic biota revisited, vol 52. no 3. International Association for Plant Taxonomy, ViennaGoogle Scholar
  9. Cavieres LA, Quiroz CL, Molina-Montenegro MA, Muñoz AA, Pauchard A (2005) Nurse effect of the native cushion plant Azorella monantha on the invasive non-native Taraxacum officinale in the high-Andes of central Chile. Perspect Plant Ecol Evolution and Systematics 7(3):217–226CrossRefGoogle Scholar
  10. Cavieres LA, Badano EI, Sierra-Almeida A, Molina-Montenegro MA (2007) Microclimatic modifications of cushion plants and their consequences for seedling survival of native and non-native herbaceous species in the high Andes of central Chile. Arct Antarct Alp Res 39(2):229–236CrossRefGoogle Scholar
  11. Cermak T, Kubat Z, Hobza R, Koblizkova A, Widmer A, Macas J, Vyskot B, Kejnovsky E (2008) Survey of repetitive sequences in Silene latifolia with respect to their distribution on sex chromosomes. Chromosome Res 16(7):961–976PubMedCrossRefGoogle Scholar
  12. Cui L, Wall PK, Leebens-Mack JH, Lindsay BG, Soltis DE, Doyle JJ, Soltis PS, Carlson JE, Arumuganathan K, Barakat A, Albert VA, Ma H, de Pamphilis CW (2006) Widespread genome duplications throughout the history of flowering plants. Genome Res 16(6):738–749PubMedCrossRefGoogle Scholar
  13. Desfeux C, Lejeune B (1996) Systematics of euromediterranean Silene (Caryophyllaceae): evidence from a phylogenetic analysis using ITS sequences. CR ACAD SCI III VIE 319(4):351–358Google Scholar
  14. Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc 2(9):2233–2244PubMedCrossRefGoogle Scholar
  15. Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol Ecol 17(5):1170–1188PubMedCrossRefGoogle Scholar
  16. Escudero A, Gimenez-Benavides L, Iriondo JM, Rubio A (2005) Patch dynamics and islands of fertility in a high mountain Mediterranean community. Arct Antarct Alp Res 36(4):518–527CrossRefGoogle Scholar
  17. Gabrielsen TM, Bachmann K, Jakobsen KS, Brochmann C (1997) Glacial survival does not matter: RAPD phylogeography of Nordic Saxifraga oppositifolia. Mol Ecol 6(9):831–842CrossRefGoogle Scholar
  18. Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220(4601):1049–1051PubMedCrossRefGoogle Scholar
  19. Garnatje T, Garcia S, Vilatersana R, Valles J (2006) Genome size variation in the genus Carthamus (Asteraceae, Cardueae): systematic implications and additive changes during allopolyploidization. Ann Bot 97(3):461–467PubMedCrossRefGoogle Scholar
  20. Gavilán RG, Sanchez-Mata D, Escudero A, Rubio A (2002) Spatial structure and interspecific interactions in Mediterranean high mountain vegetation (Sistema Central, Spain). Israel J Plant Sci 50(3):217–228CrossRefGoogle Scholar
  21. Giménez-Benavides L, Escudero A, Perez-Garcia F (2005) Seed germination of high mountain Mediterranean species: altitudinal, interpopulation and interannual variability. Ecol Res 20(4):433–444CrossRefGoogle Scholar
  22. Giménez-Benavides L, Escudero A, Iriondo JM (2007a) Local adaptation enhances seedling recruitment along an altitudinal gradient in a high mountain mediterranean plant. Ann Bot 99:723–734PubMedCrossRefGoogle Scholar
  23. Giménez-Benavides L, Escudero A, Iriondo JM (2007b) Reproductive limits of a late-flowering high-mountain Mediterranean plant along an elevational climate gradient. New Phytol 173(2):367–382PubMedCrossRefGoogle Scholar
  24. Gregory TR, Hebert PDN (1999) The modulation of DNA content: proximate causes and ultimate consequences. Genome Res 9(4):317–324PubMedGoogle Scholar
  25. Greilhuber J (2005) Intraspecific variation in genome size in angiosperms: Identifying its existence. Ann Bot 95(1):91–98PubMedCrossRefGoogle Scholar
  26. Hagerup O (1932) Über Polyploidie in Beziehung zu Klima. Hereditas 16:19–40CrossRefGoogle Scholar
  27. Hampe A, Petit R (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8(5):461–467PubMedCrossRefGoogle Scholar
  28. Hardy OJ, Vanderhoeven S, De Loose M, Meerts P (2000) Ecological, morphological and allozymic differentiation between diploid and tetraploid knapweeds (Centaurea jacea) from a contact zone in the Belgian Ardennes. New Phytol 146(2):281–290CrossRefGoogle Scholar
  29. Kawecki TJ (2008) Adaptation to marginal habitats. Annu Rev Ecol Evol S 39(1):321–342CrossRefGoogle Scholar
  30. Knight CA, Molinari NA, Petrov DA (2005) The large genome constraint hypothesis: evolution, ecology and phenotype. Ann Bot 95(1):177–190PubMedCrossRefGoogle Scholar
  31. Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems, 2nd edn. Springer-Verlag, GermanyGoogle Scholar
  32. Körner C (2007) The use of ‘altitude’ in ecological research. Trends Ecol Evoln 22(11):569–574CrossRefGoogle Scholar
  33. Kováčik J, Klejdus B, Hedbavny J, Bačkor M (2009) Tolerance of Silene vulgaris to copper: population-related comparison of selected physiological parameters. Environ Toxicol 25(6):581–592CrossRefGoogle Scholar
  34. Küpfer P (1974) Recherches sur les liens de parenté entre la flore orophile des Alpes et celle des Pyrénées. GenoveGoogle Scholar
  35. Leitch AR, Leitch IJ (2008) Genomic plasticity and the diversity of polyploid plants. Science 320(5875):481–483PubMedCrossRefGoogle Scholar
  36. Levin DA (1983) Polyploidy and the novelty of flowering plants. Am Nat 122(1):1–25CrossRefGoogle Scholar
  37. Li W-L, Berlyn GP, Asthon MS (1996) Polyploids and their structural and physiological characteristics relative to water deficit in Betula papyrifera (Betulaceae) polyploids and their structural and physiological characteristics relative to water deficit in Betula papyrifera (Betulaceae). Am J Bot 83(1):15–20CrossRefGoogle Scholar
  38. Liu X, Gituru WR, Wang Q-F (2004) Distribution of basic diploid and polyploid species of Isoetes in East Asia. J Biogeo 31(8):1239–1250CrossRefGoogle Scholar
  39. Loureiro J, Rodriguez E, Santos C, Dolezel J, Suda J (2007) A plant cytometer database. http://flower.web.ua.pt/
  40. Marie D, Brown SC (1993) A cytometric exercise in plant DNA histograms, with 2C-values for 70 species. Biol Cell 78(1–2):41–51PubMedCrossRefGoogle Scholar
  41. Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264(5157):421–424PubMedCrossRefGoogle Scholar
  42. Matsunaga S, Yagisawa F, Yamamoto M, Uchida W, Nakao S, Kawano S (2002) LTR retrotransposons in the dioecious plant Silene latifolia. Genome/National Research Council Canada = Genome/Conseil national de recherches Canada 45 (4):745–751Google Scholar
  43. Miller MB, Lyndon RF (1977) Changes in RNA levels in the shoot apex of Silene during the transition to flowering. Planta 136(2):167–172CrossRefGoogle Scholar
  44. Minder AM, Widmer A (2008) A population genomic analysis of species boundaries: neutral processes, adaptive divergence and introgression between two hybridizing plant species. Mol Ecol 17(6):1552–1563PubMedCrossRefGoogle Scholar
  45. Mráz P, Singliarová B, Urfus T, Krahulec F (2008) Cytogeography of Pilosella officinarum (Compositae): altitudinal and longitudinal differences in ploidy level distribution in the Czech Republic and Slovakia and the general pattern in Europe. Ann Bot 101(1):59–71PubMedCrossRefGoogle Scholar
  46. Noirot M, Barre P, Louarn J, Duperray C, Hamon S (2000) Nucleus–Cytosol interactions—a source of stoichiometric error in flow cytometric estimation of nuclear DNA content in plants. Ann Bot 86(2):309–316CrossRefGoogle Scholar
  47. Noirot M, Barre P, Duperray C, Hamon S, De Kochko A (2005) Investigation on the causes of stoichiometric error in genome size estimation using heat experiments: consequences on data interpretation. Ann Bot 95(1):111–118PubMedCrossRefGoogle Scholar
  48. Ohsawa T, Ide Y (2008) Global patterns of genetic variation in plant species along vertical and horizontal gradients on mountains. Global Eco Biogeogr 17(2):152–163CrossRefGoogle Scholar
  49. Otto SP, Whitton J (2000) Polyploid incidence and evolution. Ann Rev Genet 34(1):401–437. doi: 10.1146/annurev.genet.34.1.401 PubMedCrossRefGoogle Scholar
  50. Pellicer J, Fay MF, Leitch IJ (2010) The largest eukaryotic genome of them all? Bot J Linn Soc 164(1):10–15CrossRefGoogle Scholar
  51. R Team Core Development (2007) R: a language and environment for statistical computing, 2.6.1 edn. Vienna, AustriaGoogle Scholar
  52. Ramírez JM, Rey PJ, Alcántara JM, Sánchez-Lafuente AM (2006) Altitude and woody cover control recruitment of Helleborus foetidus in a Mediterranean mountain area. Ecography 29(3):375–384CrossRefGoogle Scholar
  53. Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33(1):589–639CrossRefGoogle Scholar
  54. Rautenberg A (2009) Phylogenetic relationships of Silene sect. Melandrium and allied taxa (Caryophyllaceae), as deduced from multiple gene tress. Uppsala University, UpsalaGoogle Scholar
  55. Sanmiguel P, Bennetzen JL (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann Bot 82(suppl_1):37–44CrossRefGoogle Scholar
  56. Sharma A, Dey D (1967) A comprehensive cytotaxonomic study on the family Chenopodiaceae. J Cytol Genet 2:114–127Google Scholar
  57. Sheidai M, Bahmani F, Enayatkhani M, Gholipour A (2009) Contribution to cytotaxonomy of Silene: chromosome pairing and unreduced pollen grain formation in sec Sclerocalycinae. Acta Biol Szegediensis 53(2):87–92Google Scholar
  58. Široký J, Lysák MA, Doležel J, Kejnovský E, Vyskot B (2001) Heterogeneity of rDNA distribution and genome size in Silene spp. Chromosome Res 9(5):387–393PubMedCrossRefGoogle Scholar
  59. Soltis DE, Soltis PS (1995) The dynamic nature of polyploid genomes. PNAS 92(18):8089–8091PubMedCrossRefGoogle Scholar
  60. Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, de Pamphilis CW, Wall PK, Soltis PS (2009) Polyploidy and angiosperm diversification. Am J Bot 96(1):336–348PubMedCrossRefGoogle Scholar
  61. Sonnleitner M, Flatscher R, Escobar García P, Rauchová J, Suda J, Schneeweiss GM, Hülber K, Schönswetter P (2011) Distribution and habitat segregation on different spatial scales among diploid, tetraploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps. Ann Bot 106(6):967–977CrossRefGoogle Scholar
  62. Stebbins GL (1950) Variation and evolution on plants. Columbia University Press, New YorkGoogle Scholar
  63. Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, LondonGoogle Scholar
  64. Tutin TG, Heywood VH, Burges NA, Valentine DH, Walters SM, Da W (1995) Flora Europaea, vol 1. Cambridge University Press, CambridgeGoogle Scholar
  65. Vinogradov AE (2004) Genome size and extinction risk in vertebrates. P Roy Soc B-Biol Sci 271(1549):1701–1705CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Alfredo García-Fernández
    • 1
    Email author
  • José M. Iriondo
    • 1
  • Joan Vallès
    • 2
  • Juan Orellana
    • 3
  • Adrián Escudero
    • 1
  1. 1.Área de Biodiversidad y ConservaciónESCET, Universidad Rey Juan CarlosMóstolesSpain
  2. 2.Laboratori de Botànica, Facultat de FarmàciaUniversitat de BarcelonaBarcelonaSpain
  3. 3.Departamento de Biotecnología, ETSI AgrónomosUniversidad Politécnica de MadridMadridSpain

Personalised recommendations