Genetic diversity of pioneer populations: the case of Nassauvia argentea (Asteraceae: Mutisieae) on Volcán Lonquimay, Chile

Abstract

Colonising populations do not always exhibit founder effects. Common explanations are high levels of immigration and/or reproduction, but few empirical tests have been done. We measured genetic diversity of Nassauvia argentea in terms of variation and divergence of plant populations that have colonised Volcán Lonquimay, Chile, following its latest eruption in 1988. Fifteen individuals from each of ten populations were analysed using amplified fragment length polymorphism (AFLP) markers. Genetic variation and divergence were lower in colonising populations than established ones, but not significantly so (ANOVA and Kruskal-Wallis tests, p < 0.05). No consistent or significant trends were obtained from regressions with demographic variables. Bayesian analysis of population structure reveals close relatedness among populations of all ages on the volcano. We concluded that no conspicuous founder effect has occurred in the genetic diversity of populations colonising a newly derived volcanic environment. An important implication of this is the role of proximity to source regions and species vigour in moulding genetic diversity of colonisers from different species.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Arrigo N, Tuszynski JW, Ehrich D, Gerdes T, Alvarez N (2009) Evaluating the impact of scoring parameters on the structure of intra-specific genetic variation using RawGeno, an R package for automating AFLP scoring. BMC Bioinformatics 10:33

    PubMed  Article  Google Scholar 

  2. Arroyo MTK, Squeo F (1990) Relationship between plant breeding systems and pollination. In: Kawano S (ed) Biological approaches and evolutionary trends in plants. Academic Press, London, pp 205–227

    Google Scholar 

  3. Arroyo MTK, Primack R, Armesto J (1982) Community studies in pollination ecology in the high temperate Andes of central Chile. I. Pollination mechanisms and altitudinal variation. Am J Bot 69:82–97

    Article  Google Scholar 

  4. Barton NH, Charlesworth B (1984) Genetic revolutions, founder effects and speciation. Annual Rev Ecol Syst 15:133–164

    Article  Google Scholar 

  5. Barton NH, Mallet J (1996) Natural selection and random genetic drift as causes of evolution on islands [and discussion]. Philos Trans Ser B 351:785–795

    Article  CAS  Google Scholar 

  6. Benham J (2001) Genographer. Version 1.6.0. Montana State University, Montana

    Google Scholar 

  7. Bonin A, Ehrich D, Manel S (2007) Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol Ecol 16:3737–3758

    PubMed  Article  CAS  Google Scholar 

  8. Bryant D, Moulton V (2004) Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21:255–265

    PubMed  Article  CAS  Google Scholar 

  9. Cabrera AL (1982) Revisión del género Nassauvia (Compositae). Darwiniana 24:283–379

    Google Scholar 

  10. Carson HL (1968) The population flush and its genetic consequences. In: Lewontin RC (ed) Population biology and ecology. Syracuse University Press, New York, pp 123–137

    Google Scholar 

  11. Carson HL, Wisotzkey RG (1989) Increase in genetic variance following a population bottleneck. Amer Naturalist 134:668–673

    Article  Google Scholar 

  12. Castor C (2002) Patrones, procesos y mecanismos de dispersión secundaria en plantas andinas de Chile central. PhD thesis, Universidad de Chile, Chile

  13. Chakraborty R, Nei M (1977) Bottleneck effects on average heterozygosity and genetic distance with the stepwise mutation model. Evolution 31:347–356

    Article  Google Scholar 

  14. Charlesworth D (2003) Effects of inbreeding on the genetic diversity of populations. Philos Trans Ser B 358:1051–1070

    Article  CAS  Google Scholar 

  15. Comes HP, Tribsch A, Bittkau C (2008) Plant speciation in continental island floras as exemplified by Nigella in the Aegean Archipelago. Philos Trans Ser B 363:3083–3096

    Article  Google Scholar 

  16. Corander J, Marttinen P (2006) Bayesian identification of admixture events using multilocus molecular markers. Mol Ecol 15:2833–2843

    PubMed  Article  Google Scholar 

  17. Corander J, Waldmann P, Sillanpää MJ (2003) Bayesian analysis of genetic differentiation between populations. Genetics 163:367–374

    PubMed  CAS  Google Scholar 

  18. Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Massachussetts

    Google Scholar 

  19. Curtin CD, Bellon JR, Henschke PA (2007) Genetic diversity of Dekkera bruxellensis yeasts isolated from Australian wineries. FEMS Yeast Res 7:471–481

    PubMed  Article  CAS  Google Scholar 

  20. del Moral R, Clampitt CA (1985) Growth of native plant species on recent volcanic substrates from Mount St. Helens. Amer Midl Naturalist 114:374–383

    Article  Google Scholar 

  21. del Moral R, Lacher IL (2005) Vegetation patterns 25 years after the eruption of Mount St. Helens, Washington, USA. Amer J Bot 92:1948–1956

    Article  Google Scholar 

  22. Deshpande O, Batzoglou S, Feldman M, Cavalli-Sforza L (2009) A serial founder effect model for human settlement out of Africa. Proc Roy Soc Biol Sci Ser B 276:291–300

    Article  Google Scholar 

  23. Després L, Loriot S, Gaudeul M (2002) Geographic pattern of genetic variation in the European globeflower Trollius europaeus L. (Ranunculaceae) inferred from amplified fragment length polymorphism markers. Mol Ecol 11:2337–2347

    PubMed  Article  Google Scholar 

  24. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  25. Ehrich D (2006) AFLPdat: a collection of R functions for convenient handling of AFLP data. Mol Ecol Notes 6:603–604

    Article  Google Scholar 

  26. Excoffier L, Laval G, Schneider S (2006) Arlequin Version 3.1 User Manual. Computational and Molecular Population Genetics Lab (CMPG), Institute of Zoology, University of Berne

  27. Fridriksson S, Magnusson B (1992) Development of the ecosystem on Surtsey with references to Anak Krakatau. GeoJournal 28:287–291

    Article  Google Scholar 

  28. González-Ferrán O (1995) Volcanes de Chile. Instituto Geográfico Militar, Santiago

    Google Scholar 

  29. Gross JP (2006) Nortest: tests for normality. R package version 1.0

  30. Hamrick JL, Nason JD (1996) Consequences of dispersal in plants. In: Rhodes OE Jr, Chester RK, Smith MH (eds) Population dynamics in ecological space and time. University of Chicago Press, Chicago, pp 203–236

    Google Scholar 

  31. Holland BS, Clarke AC, Meudt HM (2008) Optimizing automated AFLP scoring parameters to improve phylogenetic resolution. Syst Biol 57:347–366

    PubMed  Article  Google Scholar 

  32. Holsinger KE, Wallace LE (2004) Bayesian approaches for the analysis of population genetic structure: an example from Platanthera leucophaea (Orchidaceae). Mol Ecol 13:887–894

    PubMed  Article  Google Scholar 

  33. Holsinger KE, Lewis PO, Dey DK (2002) A Bayesian approach to inferring population structure from dominant markers. Mol Ecol 11:1157–1164

    PubMed  Article  CAS  Google Scholar 

  34. Honnay O, Jacquemyn H, Van Looy K, Vandepitte K, Breyne P (2009) Temporal and spatial genetic variation in a metapopulation of the annual Erysimum cheiranthoides on stony river banks. J Ecol 97:131–141

    Article  Google Scholar 

  35. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    PubMed  Article  CAS  Google Scholar 

  36. Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898–1914

    Article  Google Scholar 

  37. Ingvarsson PK (2001) Restoration of genetic variation lost—the genetic rescue hypothesis. Trends Ecol Evol 16:62–63

    PubMed  Article  Google Scholar 

  38. Jacquemyn H, Vandepitte K, Roldan-Ruiz I, Honnay O (2008) Rapid loss of genetic variation in a founding population of Primula elatior (Primulaceae) after colonization. Ann Bot 103:777–783

    PubMed  Article  Google Scholar 

  39. Keller LF, Jeffery KJ, Arcese P, Beaumont M (2001) Immigration and the ephemerality of a natural population bottleneck: evidence from molecular markers. Proc Roy Soc Biol Sci Ser B 268:1387–1394

    Article  CAS  Google Scholar 

  40. Leberg PL (1992) Effects of population bottlenecks on genetic diversity as measured by allozyme electrophoresis. Evolution 46:477–494

    Article  Google Scholar 

  41. López PG, Tremetsberger K, Stuessy TF, Gómez-Gónzalez S, Jiménez A, Baeza CM (2010) Patterns of genetic variation in colonizing plant species: Nassauvia lagascae (Asteraceae: Mutiseae) on Volcán Lonquimay, Chile. Amer J Bot 97:423–432

    Article  Google Scholar 

  42. Maruyama T, Fuerst PA (1985) Population bottlenecks and nonequilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics 111:675–689

    PubMed  CAS  Google Scholar 

  43. Mayr E (1942) Systematics and the origin of species. Columbia University Press, New York

    Google Scholar 

  44. McCauley DE, Raveill J, Antonovics J (1995) Local founding events as determinants of genetic structure in a plant metapopulation. Heredity 75:630–636

    Article  Google Scholar 

  45. Merilä J, Björklund M, Baker A (1996) The successful founder: genetics of introduced Carduelis chloris (greenfinch) populations in New Zealand. Heredity 77:410–422

    Article  Google Scholar 

  46. Miller NJ, Ciosi M, Sappington TW (2007) Genome scan of Diabrotica virgifera virgifera for genetic variation associated with crop rotation tolerance. J Appl Entomol 131:378–385

    Article  CAS  Google Scholar 

  47. Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol Evol 14:389–394

    PubMed  Article  Google Scholar 

  48. Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  Google Scholar 

  49. Pannell JR, Dorken ME (2006) Colonisation as a common denominator in plant metapopulations and range expansions: effects on genetic diversity and sexual systems. Landscape Ecol 21:837–848

    Article  Google Scholar 

  50. Parrish TL (2002) Krakatau: genetic consequences of island colonization. PhD thesis, University of Utrecht, Netherlands

  51. Philippi RA (1894) Plantas nuevas Chilenas. Anales Univ Chile 87:82

  52. Polans NO, Allard RW (1989) An experimental evaluation of the recovery potential of ryegrass populations from genetic stress resulting from restriction of population size. Evolution 43:1320–1324

    Article  Google Scholar 

  53. Provine WB (1989) Founder effects and genetic revolutions in microevolution and speciation: an historical perspective. In: Giddings LV, Kaneshiro KY, Anderson WW (eds) Genetics, speciation and the founder principle. Oxford University Press, Oxford, pp 43–76

    Google Scholar 

  54. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  55. Robichaux RH, Friar EA, Mount DW (1997) Molecular genetic consequences of a population bottleneck associated with reintroduction of the Mauna Kea silversword. Conservation Biol 11:1140–1146

    Article  Google Scholar 

  56. Schlüter PM, Harris S (2006) Analysis of multilocus fingerprinting datasets containing missing data. Mol Ecol Notes 6:569–572

    Article  Google Scholar 

  57. Slatkin M (1977) Gene flow and genetic drift in a species subject to frequent local extinctions. Theor Populat Biol 12:253–262

    Article  CAS  Google Scholar 

  58. Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Kansas Univ Sci Bull 38:1409–1438

    Google Scholar 

  59. Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit. J R Statist Soc B 64:583–639

    Article  Google Scholar 

  60. Sun M (1996) Effects of population size, mating system, and evolutionary origin on genetic diversity in Spiranthes sinensis and S. hongkongensis. Conservation Biol 10:785–795

    Article  Google Scholar 

  61. Swofford DL (2002) PAUP*: Phylogenetic Analyses Using Parsimony (*and other methods) 4.0 beta version. Sinauer Associates, Massachussetts

    Google Scholar 

  62. Templeton AR (1980) The theory of speciation via the founder principle. Genetics 94:1011–1038

    PubMed  CAS  Google Scholar 

  63. Thornton IWB (1996) Krakatau: the destruction and reassembly of an island ecosystem. Harvard University Press, Massachussetts

    Google Scholar 

  64. Thornton IWB (2001) Colonization of an island volcano, Long Island, Papua New Guinea, and an emergent island, Motmot, in its Caldera Lake. I. General Introduction. J Biogeogr 28:1299–1310

    Article  Google Scholar 

  65. Travis SE, Proffitt CE, Lowenfeld RC, Mitchell TW (2002) A comparative assessment of genetic diversity among differently-aged populations of Spartina alterniflora on restored versus natural wetlands. Restorat Ecol 10:37–42

    Article  Google Scholar 

  66. Tremetsberger K, Stuessy TF, Samuel RM, Baeza CM, Fay M (2003) Genetics of colonization in Hypochaeris tenuifolia (Asteraceae, Lactuceae) on Volcán Lonquimay, Chile. Mol Ecol 12:2649–2659

    PubMed  Article  CAS  Google Scholar 

  67. Vos P, Hogers R, Bleeker M, Reijans M, van der Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414

    PubMed  Article  CAS  Google Scholar 

  68. Wade MC, McCauley DE (1988) Extinction and recolonization: their effects on the genetic differentiation of local populations. Evolution 42:995–1005

    Article  Google Scholar 

  69. Whittaker RJ, Fernández-Palacios JM (2008) Island biogeography: ecology, evolution and conservation, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  70. Wooten JA, Tolley-Jordan LR (2009) Validation of phylogenetic signals in amplified fragment length data: testing the utility and reliability in closely related taxa. BMC Res Notes 2:26

    PubMed  Article  Google Scholar 

  71. Yang S, Bishop JL, Webster MS (2008) Colonization genetics of an animal-dispersed plant (Vaccinium membranaceum) at Mount St. Helens, Washington. Mol Ecol 17:731–740

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank: the Departamento de Botánica, Universidad de Concepción, for work, space and consultation of herbarium material (CONC) in Chile; the Corporación Nacional Forestal (CONAF) for permission to collect samples from Chilean National Parks; R. Hössinger and M. J. Parra for help with collecting; G. Kadlec for technical assistance; Dr. David Hulce at SoftGenetics for guidance on the appropriate use of GeneMarker for scoring of AFLPs and an anonymous reviewer for helpful comments on the manuscript. This project was funded by a grant from Fonds zur Förderung der Wissenschaftlichen Forschung (FWF grant P18446 to TFS). EG was supported by a UK Natural Environment Research Council Masters studentship via the University of York Biology Department.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karin Tremetsberger.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Green, E.C., Tremetsberger, K., Jiménez, A. et al. Genetic diversity of pioneer populations: the case of Nassauvia argentea (Asteraceae: Mutisieae) on Volcán Lonquimay, Chile. Plant Syst Evol 298, 109–119 (2012). https://doi.org/10.1007/s00606-011-0527-y

Download citation

Keywords

  • AFLPs
  • Colonisation
  • Compositae
  • Founder effect
  • Volcanic disturbance