Advertisement

Plant Systematics and Evolution

, Volume 298, Issue 1, pp 109–119 | Cite as

Genetic diversity of pioneer populations: the case of Nassauvia argentea (Asteraceae: Mutisieae) on Volcán Lonquimay, Chile

  • Emily C. Green
  • Karin TremetsbergerEmail author
  • Alejandra Jiménez
  • Susana Gómez-González
  • Tod F. Stuessy
  • Carlos M. Baeza
  • Patricio G. López
Original Article

Abstract

Colonising populations do not always exhibit founder effects. Common explanations are high levels of immigration and/or reproduction, but few empirical tests have been done. We measured genetic diversity of Nassauvia argentea in terms of variation and divergence of plant populations that have colonised Volcán Lonquimay, Chile, following its latest eruption in 1988. Fifteen individuals from each of ten populations were analysed using amplified fragment length polymorphism (AFLP) markers. Genetic variation and divergence were lower in colonising populations than established ones, but not significantly so (ANOVA and Kruskal-Wallis tests, p < 0.05). No consistent or significant trends were obtained from regressions with demographic variables. Bayesian analysis of population structure reveals close relatedness among populations of all ages on the volcano. We concluded that no conspicuous founder effect has occurred in the genetic diversity of populations colonising a newly derived volcanic environment. An important implication of this is the role of proximity to source regions and species vigour in moulding genetic diversity of colonisers from different species.

Keywords

AFLPs Colonisation Compositae Founder effect Volcanic disturbance 

Notes

Acknowledgments

The authors thank: the Departamento de Botánica, Universidad de Concepción, for work, space and consultation of herbarium material (CONC) in Chile; the Corporación Nacional Forestal (CONAF) for permission to collect samples from Chilean National Parks; R. Hössinger and M. J. Parra for help with collecting; G. Kadlec for technical assistance; Dr. David Hulce at SoftGenetics for guidance on the appropriate use of GeneMarker for scoring of AFLPs and an anonymous reviewer for helpful comments on the manuscript. This project was funded by a grant from Fonds zur Förderung der Wissenschaftlichen Forschung (FWF grant P18446 to TFS). EG was supported by a UK Natural Environment Research Council Masters studentship via the University of York Biology Department.

Supplementary material

606_2011_527_MOESM1_ESM.pdf (55 kb)
Supplementary material 1 (PDF 55.3 kb)
606_2011_527_MOESM2_ESM.pdf (115 kb)
Supplementary material 2 (PDF 115 kb)
606_2011_527_MOESM3_ESM.pdf (26 kb)
Supplementary material 3 (PDF 26.3 kb)

References

  1. Arrigo N, Tuszynski JW, Ehrich D, Gerdes T, Alvarez N (2009) Evaluating the impact of scoring parameters on the structure of intra-specific genetic variation using RawGeno, an R package for automating AFLP scoring. BMC Bioinformatics 10:33PubMedCrossRefGoogle Scholar
  2. Arroyo MTK, Squeo F (1990) Relationship between plant breeding systems and pollination. In: Kawano S (ed) Biological approaches and evolutionary trends in plants. Academic Press, London, pp 205–227Google Scholar
  3. Arroyo MTK, Primack R, Armesto J (1982) Community studies in pollination ecology in the high temperate Andes of central Chile. I. Pollination mechanisms and altitudinal variation. Am J Bot 69:82–97CrossRefGoogle Scholar
  4. Barton NH, Charlesworth B (1984) Genetic revolutions, founder effects and speciation. Annual Rev Ecol Syst 15:133–164CrossRefGoogle Scholar
  5. Barton NH, Mallet J (1996) Natural selection and random genetic drift as causes of evolution on islands [and discussion]. Philos Trans Ser B 351:785–795CrossRefGoogle Scholar
  6. Benham J (2001) Genographer. Version 1.6.0. Montana State University, MontanaGoogle Scholar
  7. Bonin A, Ehrich D, Manel S (2007) Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol Ecol 16:3737–3758PubMedCrossRefGoogle Scholar
  8. Bryant D, Moulton V (2004) Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21:255–265PubMedCrossRefGoogle Scholar
  9. Cabrera AL (1982) Revisión del género Nassauvia (Compositae). Darwiniana 24:283–379Google Scholar
  10. Carson HL (1968) The population flush and its genetic consequences. In: Lewontin RC (ed) Population biology and ecology. Syracuse University Press, New York, pp 123–137Google Scholar
  11. Carson HL, Wisotzkey RG (1989) Increase in genetic variance following a population bottleneck. Amer Naturalist 134:668–673CrossRefGoogle Scholar
  12. Castor C (2002) Patrones, procesos y mecanismos de dispersión secundaria en plantas andinas de Chile central. PhD thesis, Universidad de Chile, ChileGoogle Scholar
  13. Chakraborty R, Nei M (1977) Bottleneck effects on average heterozygosity and genetic distance with the stepwise mutation model. Evolution 31:347–356CrossRefGoogle Scholar
  14. Charlesworth D (2003) Effects of inbreeding on the genetic diversity of populations. Philos Trans Ser B 358:1051–1070CrossRefGoogle Scholar
  15. Comes HP, Tribsch A, Bittkau C (2008) Plant speciation in continental island floras as exemplified by Nigella in the Aegean Archipelago. Philos Trans Ser B 363:3083–3096CrossRefGoogle Scholar
  16. Corander J, Marttinen P (2006) Bayesian identification of admixture events using multilocus molecular markers. Mol Ecol 15:2833–2843PubMedCrossRefGoogle Scholar
  17. Corander J, Waldmann P, Sillanpää MJ (2003) Bayesian analysis of genetic differentiation between populations. Genetics 163:367–374PubMedGoogle Scholar
  18. Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, MassachussettsGoogle Scholar
  19. Curtin CD, Bellon JR, Henschke PA (2007) Genetic diversity of Dekkera bruxellensis yeasts isolated from Australian wineries. FEMS Yeast Res 7:471–481PubMedCrossRefGoogle Scholar
  20. del Moral R, Clampitt CA (1985) Growth of native plant species on recent volcanic substrates from Mount St. Helens. Amer Midl Naturalist 114:374–383CrossRefGoogle Scholar
  21. del Moral R, Lacher IL (2005) Vegetation patterns 25 years after the eruption of Mount St. Helens, Washington, USA. Amer J Bot 92:1948–1956CrossRefGoogle Scholar
  22. Deshpande O, Batzoglou S, Feldman M, Cavalli-Sforza L (2009) A serial founder effect model for human settlement out of Africa. Proc Roy Soc Biol Sci Ser B 276:291–300CrossRefGoogle Scholar
  23. Després L, Loriot S, Gaudeul M (2002) Geographic pattern of genetic variation in the European globeflower Trollius europaeus L. (Ranunculaceae) inferred from amplified fragment length polymorphism markers. Mol Ecol 11:2337–2347PubMedCrossRefGoogle Scholar
  24. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  25. Ehrich D (2006) AFLPdat: a collection of R functions for convenient handling of AFLP data. Mol Ecol Notes 6:603–604CrossRefGoogle Scholar
  26. Excoffier L, Laval G, Schneider S (2006) Arlequin Version 3.1 User Manual. Computational and Molecular Population Genetics Lab (CMPG), Institute of Zoology, University of BerneGoogle Scholar
  27. Fridriksson S, Magnusson B (1992) Development of the ecosystem on Surtsey with references to Anak Krakatau. GeoJournal 28:287–291CrossRefGoogle Scholar
  28. González-Ferrán O (1995) Volcanes de Chile. Instituto Geográfico Militar, SantiagoGoogle Scholar
  29. Gross JP (2006) Nortest: tests for normality. R package version 1.0Google Scholar
  30. Hamrick JL, Nason JD (1996) Consequences of dispersal in plants. In: Rhodes OE Jr, Chester RK, Smith MH (eds) Population dynamics in ecological space and time. University of Chicago Press, Chicago, pp 203–236Google Scholar
  31. Holland BS, Clarke AC, Meudt HM (2008) Optimizing automated AFLP scoring parameters to improve phylogenetic resolution. Syst Biol 57:347–366PubMedCrossRefGoogle Scholar
  32. Holsinger KE, Wallace LE (2004) Bayesian approaches for the analysis of population genetic structure: an example from Platanthera leucophaea (Orchidaceae). Mol Ecol 13:887–894PubMedCrossRefGoogle Scholar
  33. Holsinger KE, Lewis PO, Dey DK (2002) A Bayesian approach to inferring population structure from dominant markers. Mol Ecol 11:1157–1164PubMedCrossRefGoogle Scholar
  34. Honnay O, Jacquemyn H, Van Looy K, Vandepitte K, Breyne P (2009) Temporal and spatial genetic variation in a metapopulation of the annual Erysimum cheiranthoides on stony river banks. J Ecol 97:131–141CrossRefGoogle Scholar
  35. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267PubMedCrossRefGoogle Scholar
  36. Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898–1914CrossRefGoogle Scholar
  37. Ingvarsson PK (2001) Restoration of genetic variation lost—the genetic rescue hypothesis. Trends Ecol Evol 16:62–63PubMedCrossRefGoogle Scholar
  38. Jacquemyn H, Vandepitte K, Roldan-Ruiz I, Honnay O (2008) Rapid loss of genetic variation in a founding population of Primula elatior (Primulaceae) after colonization. Ann Bot 103:777–783PubMedCrossRefGoogle Scholar
  39. Keller LF, Jeffery KJ, Arcese P, Beaumont M (2001) Immigration and the ephemerality of a natural population bottleneck: evidence from molecular markers. Proc Roy Soc Biol Sci Ser B 268:1387–1394CrossRefGoogle Scholar
  40. Leberg PL (1992) Effects of population bottlenecks on genetic diversity as measured by allozyme electrophoresis. Evolution 46:477–494CrossRefGoogle Scholar
  41. López PG, Tremetsberger K, Stuessy TF, Gómez-Gónzalez S, Jiménez A, Baeza CM (2010) Patterns of genetic variation in colonizing plant species: Nassauvia lagascae (Asteraceae: Mutiseae) on Volcán Lonquimay, Chile. Amer J Bot 97:423–432CrossRefGoogle Scholar
  42. Maruyama T, Fuerst PA (1985) Population bottlenecks and nonequilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics 111:675–689PubMedGoogle Scholar
  43. Mayr E (1942) Systematics and the origin of species. Columbia University Press, New YorkGoogle Scholar
  44. McCauley DE, Raveill J, Antonovics J (1995) Local founding events as determinants of genetic structure in a plant metapopulation. Heredity 75:630–636CrossRefGoogle Scholar
  45. Merilä J, Björklund M, Baker A (1996) The successful founder: genetics of introduced Carduelis chloris (greenfinch) populations in New Zealand. Heredity 77:410–422CrossRefGoogle Scholar
  46. Miller NJ, Ciosi M, Sappington TW (2007) Genome scan of Diabrotica virgifera virgifera for genetic variation associated with crop rotation tolerance. J Appl Entomol 131:378–385CrossRefGoogle Scholar
  47. Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol Evol 14:389–394PubMedCrossRefGoogle Scholar
  48. Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10CrossRefGoogle Scholar
  49. Pannell JR, Dorken ME (2006) Colonisation as a common denominator in plant metapopulations and range expansions: effects on genetic diversity and sexual systems. Landscape Ecol 21:837–848CrossRefGoogle Scholar
  50. Parrish TL (2002) Krakatau: genetic consequences of island colonization. PhD thesis, University of Utrecht, NetherlandsGoogle Scholar
  51. Philippi RA (1894) Plantas nuevas Chilenas. Anales Univ Chile 87:82Google Scholar
  52. Polans NO, Allard RW (1989) An experimental evaluation of the recovery potential of ryegrass populations from genetic stress resulting from restriction of population size. Evolution 43:1320–1324CrossRefGoogle Scholar
  53. Provine WB (1989) Founder effects and genetic revolutions in microevolution and speciation: an historical perspective. In: Giddings LV, Kaneshiro KY, Anderson WW (eds) Genetics, speciation and the founder principle. Oxford University Press, Oxford, pp 43–76Google Scholar
  54. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  55. Robichaux RH, Friar EA, Mount DW (1997) Molecular genetic consequences of a population bottleneck associated with reintroduction of the Mauna Kea silversword. Conservation Biol 11:1140–1146CrossRefGoogle Scholar
  56. Schlüter PM, Harris S (2006) Analysis of multilocus fingerprinting datasets containing missing data. Mol Ecol Notes 6:569–572CrossRefGoogle Scholar
  57. Slatkin M (1977) Gene flow and genetic drift in a species subject to frequent local extinctions. Theor Populat Biol 12:253–262CrossRefGoogle Scholar
  58. Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Kansas Univ Sci Bull 38:1409–1438Google Scholar
  59. Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit. J R Statist Soc B 64:583–639CrossRefGoogle Scholar
  60. Sun M (1996) Effects of population size, mating system, and evolutionary origin on genetic diversity in Spiranthes sinensis and S. hongkongensis. Conservation Biol 10:785–795CrossRefGoogle Scholar
  61. Swofford DL (2002) PAUP*: Phylogenetic Analyses Using Parsimony (*and other methods) 4.0 beta version. Sinauer Associates, MassachussettsGoogle Scholar
  62. Templeton AR (1980) The theory of speciation via the founder principle. Genetics 94:1011–1038PubMedGoogle Scholar
  63. Thornton IWB (1996) Krakatau: the destruction and reassembly of an island ecosystem. Harvard University Press, MassachussettsGoogle Scholar
  64. Thornton IWB (2001) Colonization of an island volcano, Long Island, Papua New Guinea, and an emergent island, Motmot, in its Caldera Lake. I. General Introduction. J Biogeogr 28:1299–1310CrossRefGoogle Scholar
  65. Travis SE, Proffitt CE, Lowenfeld RC, Mitchell TW (2002) A comparative assessment of genetic diversity among differently-aged populations of Spartina alterniflora on restored versus natural wetlands. Restorat Ecol 10:37–42CrossRefGoogle Scholar
  66. Tremetsberger K, Stuessy TF, Samuel RM, Baeza CM, Fay M (2003) Genetics of colonization in Hypochaeris tenuifolia (Asteraceae, Lactuceae) on Volcán Lonquimay, Chile. Mol Ecol 12:2649–2659PubMedCrossRefGoogle Scholar
  67. Vos P, Hogers R, Bleeker M, Reijans M, van der Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  68. Wade MC, McCauley DE (1988) Extinction and recolonization: their effects on the genetic differentiation of local populations. Evolution 42:995–1005CrossRefGoogle Scholar
  69. Whittaker RJ, Fernández-Palacios JM (2008) Island biogeography: ecology, evolution and conservation, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  70. Wooten JA, Tolley-Jordan LR (2009) Validation of phylogenetic signals in amplified fragment length data: testing the utility and reliability in closely related taxa. BMC Res Notes 2:26PubMedCrossRefGoogle Scholar
  71. Yang S, Bishop JL, Webster MS (2008) Colonization genetics of an animal-dispersed plant (Vaccinium membranaceum) at Mount St. Helens, Washington. Mol Ecol 17:731–740PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Emily C. Green
    • 1
    • 8
  • Karin Tremetsberger
    • 2
    Email author
  • Alejandra Jiménez
    • 3
    • 4
  • Susana Gómez-González
    • 5
  • Tod F. Stuessy
    • 6
  • Carlos M. Baeza
    • 7
  • Patricio G. López
    • 6
  1. 1.Department of BiologyUniversity of YorkYorkUK
  2. 2.Department of Integrative Biology and Biodiversity Research, Institute of BotanyUniversity of Natural Resources and Life SciencesViennaAustria
  3. 3.Facultad de Ciencias, Instituto de Ecologia y Biodiversidad (IEB)Universidad de ChileSantiagoChile
  4. 4.Laboratorio de Invasiones Biológicas, Departamento de Manejo de Bosques y Medio Ambiente, Facultad de Ciencias ForestalesUniversidad de ConcepciónConcepciónChile
  5. 5.Laboratorio de Genómica y Biodiversidad (LGB), Departamento de Ciencias Básicas, Facultad de CienciasUniversidad del Bío BíoChillánChile
  6. 6.Department of Systematic and Evolutionary Botany, Faculty Centre of BiodiversityUniversity of ViennaViennaAustria
  7. 7.Departamento de Botánica, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
  8. 8.Department of Animal and Plant SciencesUniversity of Sheffield, Western BankSheffieldUK

Personalised recommendations