Advertisement

Plant Systematics and Evolution

, Volume 298, Issue 1, pp 51–58 | Cite as

Phylogenetic relationships of Mediterranean Hedysarea species assessed by AFLP markers

  • Houda Chennaoui-Kourda
  • Sonia Marghali
  • Nadia Zitouna
  • Neila Trifi-FarahEmail author
Original Article

Abstract

Mediterranean Hedysarea species constitute important phytogenetic resources able to promote forage production and to valorize grasslands currently damaged by severe genetic erosion. The study of genetic diversity in nine Mediterranean Hedysarea species found in North Africa was performed using the AFLP technique. The eight primer combinations generated, on the whole, 325 polymorphic bands exhibiting an important genetic diversity that constitutes an ideal source stock for germplasm selection. The estimation by AFLP analysis of the relative relationships among six Sulla and three Hedysarum species revealed the genetic nearness of the two analyzed genera as shown by the close relatedness of S. carnosa and Hedysarum species. Our investigation suggested a nuclear lineage among the Mediterranean Hedysarea species. Moreover, a common genetic pool among the analyzed species indicated a common ancestor H. membranaceum generating all the analyzed species. The obtained UPGMA dendrogram exhibited species clustering independently from their bioclimatic origin. This result was confirmed by Pearson's correlation coefficient (0.097, p = 0.302). Principal component analysis of the obtained AFLP data has also shown mixed species. In fact, the distribution in plan 1–2 (34.34% of the global inertia) showed typical continuous variability since there is no distinctiveness of species. The close congruence of the only cultivated Sulla species (i.e., S. coronaria) and the spontaneous S. flexuosa, which is affected by severe genetic erosion, could permit including these species in amelioration programs for improvement of forage crops. Moreover, the related proximity of the semi-temperate species S. capitata and H. aculeolatum, respectively, to the arid/semi-arid species S. carnosa and S. spinosissima could be exploited in breeding programs to improve the damaged southern Tunisian grasslands, especially in arid and semi-arid areas.

Keywords

AFLP Hedysarum Sulla Genetic diversity Phylogeny 

References

  1. Annicchiarico P, Abdelguerfi A, Ben Younes M, Bouzerzour H, Carroni AM, Pecetti L, Tibaoui G (2008) Adaptation of sulla cultivars to contrasting Mediterranean environments. Aust J Agric Res 59:702–706CrossRefGoogle Scholar
  2. Arab H, Haddi ML, Mehennaoui S (2009) Evaluation de la valeur nutritive par la composition chimique des principaux fourrages des zones aride et semi-aride en algerie. Sciences et technologie 30:50–58Google Scholar
  3. Baatout H, Marrakchi M, Mathieu C, Vedel F (1985) Variation of plastid and mitochondrial DNAs in the genus Hedysarum. Theor Appl Genet 70:577–584CrossRefGoogle Scholar
  4. Baatout H, Marrakchi M, Pernes j (1990) Electrophoretic studies of genetic variation in natural populations of allogamous Hedysarum capitatum and autogamous Hedysarum euspinosissimum. Plant Sci 69:49–64CrossRefGoogle Scholar
  5. Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Ann Biochem 196:80–83CrossRefGoogle Scholar
  6. Borreani G, Roggero PP, Sulas L, Valente ME (2003) Quantifying morphological stage to predict the nutritive value in sulla (Hedysarum coronarium L.). Agronomy J 95:1608–1617CrossRefGoogle Scholar
  7. Boussaïd M, Ben Fadhel N, Trifi-Farah N, Abdelkefi A, Marrakchi M (1995) Les espèces Méditerranéennes du genre Hedysarum. In: Ressources génétiques des plantes fourragères et à gazon, BRG/INRA, France, pp 115–130Google Scholar
  8. Chalhoub BA, Thibault S, Laucou V, Rameau C, Hofte H, Cousin R (1997) Silver staining and recovery of AFLP amplification products on large denaturing polyacrylamide gels. Biotechniques 22(2):216–220PubMedGoogle Scholar
  9. Chennaoui H, Marghali S, Marrakchi M, Trifi-Farah N (2007) Phylogenetic relationships in Mediterranean Hedysarum genus as inferred from ITS sequences of nuclear ribosomal DNA. Genet Resour Crop Evol 54:389–397CrossRefGoogle Scholar
  10. Chennaoui-Kourda H, Marghali S, Marrakchi M, Trifi-Farah N (2007) Genetic diversity of Sulla genus (Hedysarea) and related species using Inter-simple sequence repeat (ISSR) markers. Biochem Syst Ecol 35:682–688CrossRefGoogle Scholar
  11. Choi BH, Ohashi H (2003) Generic criteria and infrageneric system for Hedysarum and related genera (Papilionoideae-Leguminosae). Taxon 52:567–576CrossRefGoogle Scholar
  12. Claudia P, Jaimes F, Aristizábal A, Mauricio Bernal G, Zulma M, Suarez R, Dolly M (2006) AFLP fingerprinting of Colombian Clostridium spp. strains, multivariate data analysis and its taxonomical implications. J Microbiol Meth 67(1):64–69CrossRefGoogle Scholar
  13. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA mini-preparation: Version II. Plant Mol Biol Rep 1:19–21CrossRefGoogle Scholar
  14. Fávero AP, Simpson CE, Valls JFM, Vallsa JFM, Vello NA (2006) Study of the evolution of cultivated peanut through crossability studies among Arachis ipaënsis, A duranensis, and A hypogaea. Crop Sci 46:1546–1552CrossRefGoogle Scholar
  15. Ford BA, Naczi RFC, Ghazvini H, Iranpour M (2006) Amplified frangment length polymorphism analysis reveals three distinct taxa in Carex digitalis sect. Careyanne (Cyperaceae). Can J Bot 84(9):1444–1452CrossRefGoogle Scholar
  16. Frijters MA, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  17. Gilbert JE, Lewis RV, Wilkinson MJ, Caligari PDS (1999) Developing an appropriate strategy to assess genetic variability in plant germplasm collections. Theor Appl Genet 98:1125–1131CrossRefGoogle Scholar
  18. Jenczewski E, Prosperi JM, Ronfort J (1999) Evidence for gene flow between wild and cultivated Medicago sativa (Leguminosae) based on allozyme markers and quantitative traits. Am J Bot 86:677–687PubMedCrossRefGoogle Scholar
  19. Keiper FJ, McConchie R (2000) An analysis of genetic variation in natural populations of Sticherus flabellatus [R Br (St John)] using amplified fragment length polymorphism (AFLP) markers. Mol Ecol 9:571–581PubMedCrossRefGoogle Scholar
  20. Koopman WJM, Wissemann V, De Cock K, Huylenbroeck JV, De Riek J, Sabatino GJH, Visser D, Vosman B, Ritz CM, Maes B, Werlemark G, Nybom H, Debener T, Linde M, Smulders MJM (2008) AFLP markers as a tool to reconstruct complex relationships: a case study in Rosa (Rosaceae). Am J Bot 95:353–366PubMedCrossRefGoogle Scholar
  21. Lanteri S, Acquadro A, Quagliotti L, Portis E (2003) RAPD and AFLP assessment of genetic variation in a landrace of pepper (Capsicum annuum L), grown in North-West Italy. Gen Res Crop Evol 50:723–735CrossRefGoogle Scholar
  22. Lanteri S, Saba E, Cadinu M, Mallica GM, Baghino L, portis E (2004) Amplified fragment length polymorphism for genetic diversity assessment in globe artichoke. Theor Appl Genet 108:1534–1544PubMedCrossRefGoogle Scholar
  23. Lu J, Knox MR, Ambrose M, Brown JKM, Ellis THN (1996) Comparative analysis of genetic diversity in pea assessed by RFLP and PCR methods. Theor Appl Genet 93:1103–1111CrossRefGoogle Scholar
  24. Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  25. Morgante M, Olivieri AM (1993) PCR-amplified microsatellites as markers in plant genetics. Plant J 3:175–182PubMedCrossRefGoogle Scholar
  26. Mulunch T, Heiko CB, Maass BL (2007) Genetic diversity in Yam germplasm from Ethiopia and their relatedness to the main cultivated Discorea species assessed by AFLP markers. Crop Sci 47:1744–1753CrossRefGoogle Scholar
  27. Nei M, Li WH (1979) Mathematical model for studying genetical variation in terms of restriction endonucleases. Proc Natl Acad Sci 74:5267–5273Google Scholar
  28. Portis E, Barchi L, Acquadro A, Macua JI, Lanteri S (2005) Genetic diversity assessment in cultivated cardoon by AFLP (amplified fragment length polymorphism) and microsatellite markers. Plant Breed 124:299–304CrossRefGoogle Scholar
  29. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238CrossRefGoogle Scholar
  30. Prevost A, Wilkinson MJ (1999) A new system of comparing PCR primers applied to SSR fingerprinting of potato cultivars. Theor Appl Genet 98:107–112CrossRefGoogle Scholar
  31. Rohlf FJ (2000) NTSYS-pc numerical taxonomy and multivariate analysis system version 2.1 Manual. Applied Biostatistics Inc, New YorkGoogle Scholar
  32. Roldan-Ruiz I, Dendauw J, Van Bockstaele E, Depicker A, De Loose M (2000) AFLP markers reveal high polymorphic rates in ryegrasses (Lolium ssp). Mol Breed 6:125–134CrossRefGoogle Scholar
  33. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Plainview, NYGoogle Scholar
  34. Sarno R, Stringi L (1982) Sulla (Hedysarum coronarium L.). In: Baldoni R, Giardini L (eds) Coltivazioni Erbacee, vol 18. Bologna, Pàtron Editore, pp 897–907Google Scholar
  35. SAS (1990) SAS user’s guide: SAS STAT, SAS BASIC. Version 6 fourth edition. SAS incl BOX 8000. cary, N.C. 27512-8000Google Scholar
  36. Shah AH, Dilnawaz SA, Khaliq I, Batool F, Hassan L, Pearce SR (2009) Evaluation of phylogenetic relationship among Sea Buckthorn (Hippophae rhamnoides L spp. turkestanica) wild ecotypes from Pakistan using Amplified Fragment Length Polymorphism (AFLP). Pak J Bot 41(5):2419–2426Google Scholar
  37. Trifi-Farah N, Marrakchi M (2001) Hedysarum phylogeny mediated by RFLP analysis of nuclear ribosomal DNA. Genet Res Crop Evol 48:339–345CrossRefGoogle Scholar
  38. Trifi-Farah N, Chatti WS, Marrakchi M (1989) Analyse de la variabilité morphologique et enzymatique des formes cultivées et spontanées de Hedysarum coronarium L en Tunisie. Agronomie 9:59–698Google Scholar
  39. Trifi-Farah N, Baatout H, Boussaid M, Combes D, Figier J, Hannachi-Salhi A, Marrakchi M (2002) Evaluation des ressources génétiques des espèces du genre Hedysarum dans le bassin méditerranéen. Plant Genet Resour Newsl 130:1–6Google Scholar
  40. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kupier M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  41. Wang Z, Gao HW, Wu YQ, Han JG (2007) Genetic diversity and population structure of caragana korshinskii revealed by AFLP. Crop Sci 47:1737–1743CrossRefGoogle Scholar
  42. Yap IV, Nelson RJ (1996) Winboot: a program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms IRRI Discussion Paper Se-ries No 14 International Rice Research Institute, PO Box 933, Manila, Philippines. Yuan 95Google Scholar
  43. Zuriaga L, Blanca J, Nuez F (2009) Classification and phylogenetic relationships in Solanum section Lycopersicon based on AFLP and two nuclear gene sequences. Genet Resour Crop Evol 56(5):663–678CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Houda Chennaoui-Kourda
    • 1
  • Sonia Marghali
    • 1
  • Nadia Zitouna
    • 1
  • Neila Trifi-Farah
    • 1
    Email author
  1. 1.Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie, Faculté des Sciences de TunisCampus UniversitaireTunisTunisia

Personalised recommendations