Advertisement

Plant Systematics and Evolution

, Volume 298, Issue 1, pp 43–50 | Cite as

Microsporogenesis, microgametogenesis, and pollen morphology of Ambrosia artemisiifolia L. in China

  • Jia-Xi LiuEmail author
  • Min Wang
  • Bing-Xiao Chen
  • Ping Jin
  • Jing-Yu Li
  • Ke Zeng
Original Article

Abstract

Ambrosia artemisiifolia L. from Ambrosia of the Heliantheae of the Asteraceae family is a recognized harmful weed worldwide and one of the major invasive foreign plants in China. In this study, we investigated its reproductive features, focusing on its microsporogenesis, microgametogenesis, and pollen morphology. The results show that (1) Ambrosia artemisiifolia L. is a dicotyledonous plant and has spherical, tricolpate pollen grains with spiny outer wall; (2) its anther wall comprises four layers, namely epidermis, endothecium, middle layers, and amoeboid tapetum; (3) cytokinesis of microspore mother cells is successive; (4) most of tetrads are tetrahedral; and (5) mature pollen grains are three-celled. In conclusion, although Ambrosia artemisiifolia L. is a dicotyledonous plant with tricolpate pollen, its microsporogenesis is successive, which is different from typical dicots.

Keywords

Ambrosia artemisiifolia L. Microsporogenesis Microgametogenesis Pollen morphology Reproductive biology Successive cytokinesis Invasive plant 

Notes

Acknowledgments

This work is supported by the Beijing Natural Science Foundation of China (grant nos. 8102012 and 8022007) and the Science and Technology Projects of Beijing Municipal Education Commission of China (grant no. KM200910028013).

References

  1. Barinova I, Zhexembekova M, Barsova E et al (2002) Antirrhinum majus microspore maturation and transient transformation in vitro. J Exp Bot 53:1119–1129PubMedCrossRefGoogle Scholar
  2. Basset IJ, Crompton CW (1975) The biology of canadian weeds.11. Ambrosia artemisiifolia L. and A. psilostachya DC. Can J Plant Sci 55:463–476CrossRefGoogle Scholar
  3. Bedinger P (1992) The remarkable biology of pollen. Plant Cell 4:879–887PubMedCrossRefGoogle Scholar
  4. Blackmore S, Crane PR (1998) The evolution of apertures in the spores and pollen grains of embryophytes. In: Owens S, Rudall PJ (eds) Reproductive biology. Royal Botanic Gardens, Kew, pp 159–182Google Scholar
  5. Blackmore S, Thiele K (1988) Successive cytokinesis during microsporogenesis in the Proteaceae. Pollination’88. University of Melbourne, pp 47–49Google Scholar
  6. Carosso A, Gallesio MT (2000) Allergy to ragweed: clinical relevance in Turin. Aerobiologia 16:155–158CrossRefGoogle Scholar
  7. Chen H, Chen LJ, Albright TP (2007) Developing habitat-suitability maps of invasive Ragweed (Ambrosia artemisiifolia L.) in China using GIS and statistical methods. In: Lai PC and Mak ASH (eds) GIS for Health and the Environment. Springer, Berlin, pp 105–121Google Scholar
  8. Fumanal B, Plenchette C, Chauvel B et al (2006) Which role can arbuscular mycorrhizal fungi play in the facilitation of Ambrosia artemisiifolia L. invasion in France? Mycorrhiza 17:25–35PubMedCrossRefGoogle Scholar
  9. Furness CA (2008) Successive microsporogenesis in eudicots, with particular reference to Berberidaceae (Ranunculales). Plant Syst Evol 273:211–223CrossRefGoogle Scholar
  10. Furness CA, Rudall PJ (2004) Pollen aperture evolution—a crucial factor for eudicot success? Trends Pl Sci 9:154–158CrossRefGoogle Scholar
  11. Gao PM, Li WY (1987) Observation of common and giant ragweed pollen with a scanning electro microscope. J Shenyang Agri Univ 18(3):100Google Scholar
  12. Lersten NR, Curtis JD (1990) Invasive tapetum and trieelled pollen in Ambrosia trifida (Asteraceae, tribe Heliantheae). Plant Sys Evol 169:237–243CrossRefGoogle Scholar
  13. Munshi AH (2000) Gene expression in allergenic pollen. Aerobiologia 16:331–334CrossRefGoogle Scholar
  14. Payne WW (1966) Notes on the Ragweeds of South America with the description of two new species: Ambrosia pannosa and A. parvifolia (Compositae). Brittonia 18:28–37CrossRefGoogle Scholar
  15. Pimentel D (2002) Biological invasions: economic and environmental costs of alien plant, animal, and microbe species. CRC, New YorkGoogle Scholar
  16. Roy J (1990) In search of the characteristics of plant invaders. In: Di Castri AJ, Debussche M (eds) Biological invasions in Europe and the Mediterranean Basin. Kluwer Academic, Dordrecht, pp 335–352CrossRefGoogle Scholar
  17. Sakai AK, Allendorf FW, Holt JS et al (2001) The population biology of invasive species. Ann Rev Ecol Syst 32:305–332CrossRefGoogle Scholar
  18. Solomon WR (1984) Aerobiology of pollinosis. J Allergy Clin Immunol 74:449–461PubMedCrossRefGoogle Scholar
  19. Taramarcaz P, Lambelet C, Clot B et al (2005) Ragweed (Ambrosia) progression and its health risks: will Switzerland resist this invasion? Swiss Med Wkly 135:538–548PubMedGoogle Scholar
  20. Vitousek PM, D’Antonio CM, Loope LL et al (1997) Introduced species: a significant component of humancaused global change. N Z J Ecol 21:1–16Google Scholar
  21. White JF, Bernstein DI (2003) Key pollen allergens in North America. Ann Allergy Asthma Immunol 91:425–435PubMedCrossRefGoogle Scholar
  22. Williamson M. (1996) Biological invasion. Chapman & Hall, LondonGoogle Scholar
  23. Zeng K, Zhu YQ, Yu JW et al (2009) Studies on the pollen morphology and development of male gametophyte of Ambrosia trifida L. J Chin Electr Microsc Soc 5:432–436Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jia-Xi Liu
    • 1
    Email author
  • Min Wang
    • 1
  • Bing-Xiao Chen
    • 1
  • Ping Jin
    • 1
  • Jing-Yu Li
    • 1
  • Ke Zeng
    • 1
  1. 1.College of Life SciencesCapital Normal UniversityBeijingChina

Personalised recommendations