Plant Systematics and Evolution

, Volume 298, Issue 1, pp 25–32 | Cite as

The leaf secretory scales of Combretum molle (Combretaceae): morphology, ultrastructure and histochemistry

  • Yougasphree NaidooEmail author
  • Samia HeneidakEmail author
  • Sanjay Gairola
  • Ashley Nicholas
  • Gonasageran Naidoo
Original Article


This paper reports the results of a study on the morphology, mode of secretion, ultrastructure and histochemistry of leaf secretory scales of Combretum molle using both light and electron microscopy. The density of the secretory scales is higher on the abaxial leaf surface in the intervein areas. Each secretory scale is made up of a basal epidermal cell, a short bicellular stalk and a multicellular umbrella-like head comprising 8–24 cells. The secretion is released from each head cell into the subcuticular space through a lateral ostiole, and then onto the leaf surface via a central pore on each scale. This secretion mechanism is described in this study for the first time in family Combretaceae. Ultrastructural characteristics of scale cells display the typically active metabolism of secretory systems. Preliminary histochemical investigations show that these scales contain lipids, terpenoids, phenolics, flavonoids and alkaloids which probably offer anti-microbial and anti-herbivore protection.


Combretum molle Histochemistry Leaf micromorphology Medicinal plant Secretion mechanism Ultrastructure Scales 



The authors gratefully acknowledge the National Research Foundation, South Africa for financial support. We are very grateful to Ms. Farisha Khan and Ms. Jennifer Richards, students of the School of Biological and Conservation Sciences, University of KwaZulu-Natal, for sharing their project on Combretum.


  1. Angeh JE, Huang X, Sattler I, Swan GE, Dahse H, Hartl A, Eloff N (2007) Antimicrobial and anti-inflammatory activity of four known and one new triterpenoid from Combretum imberbe (Combretaceae). J Ethnopharmacol 110:56–60PubMedCrossRefGoogle Scholar
  2. Ascensăo L, Pais MS (1998) The leaf capitate trichomes of Leonotis leonurus: histochemistry, ultrastructure and secretion. Ann Bot 81:263–271CrossRefGoogle Scholar
  3. Baba-Moussa F, Akpagana K, Bouchet P (1999) Antifungal activities of seven West African Combretaceae used in traditional medicine. J Ethnopharmacol 66:335–338PubMedCrossRefGoogle Scholar
  4. Bornman CH, Spurr AR, Addicott FT (1969) Histochemical localization by electron microscopy of pectic substances in abscising tissue. J S Afr Bot 35:253Google Scholar
  5. Brundrett MC, Kendrick B, Peterson CA (1991) Efficient lipid staining in plant material with Sudan Red 7B or Fluoral Yellow 088 in polyethylene glycol–glycerol. Biotech Histochem 66:111–116PubMedCrossRefGoogle Scholar
  6. Carr JD, Rogers CB (1987) Chemosystematic studies of the genus Combretum (Combretaceae). I. A convenient method of identifying species of this genus by a comparison of the polar constituents extracted from leaf material. S Afr J Bot 53(2):173–176Google Scholar
  7. Charrière-Ladreix Y (1976) Répartition intracellulaire du secrétat flavonique de Populus nigra L. Planta 129:167–174CrossRefGoogle Scholar
  8. Chhabra SC, Mahunnah RLA, Mshiu EN (1989) Plants used in traditional medicine in Eastern Tanzania. II. Angiosperms (Capparidaceae–Ebenaceae). J Ethnopharmacol 25:339–359PubMedCrossRefGoogle Scholar
  9. David R, Carde JP (1964) Coloration différentiele des inclusions lipidique et terpeniques des pseudophilles du pin maritime au moyen du réactif nadi. Comptes Rendus Hebdomadaires des séances de l’Académie des Sciences, Paris 258:1338–1340Google Scholar
  10. Duke SO (1994) Commentary: secretory trichomes—a focal point of chemical and structural interactions. Int J Plant Sci 155:617–620CrossRefGoogle Scholar
  11. Eloff JN (1999) The antibacterial activity of 27 South African members of the Combretaceae. S Afr J Sci 95:148–152Google Scholar
  12. Fahn A (1988) Secretory tissues in vascular plants. New Phytol 108:229–257CrossRefGoogle Scholar
  13. Feder N, O’Brien TP (1968) Plant microtechnique: some principles and new methods. Am J Bot 55:123–142CrossRefGoogle Scholar
  14. Figueiredo AC, Pais MSS (1994) Ultrastructural aspects of the glandular cells from the secretory trichomes and from the cell suspension cultures of Achillea millefolium ssp millefolium. Ann Bot 74:179–190CrossRefGoogle Scholar
  15. Furr M, Mahlberg PG (1981) Histochemical analyses of laticifers and glandular trichomes in Cannabis sativa. J Nat Prod 44:153–159CrossRefGoogle Scholar
  16. Fyhrquist P (2007) Traditional medicinal uses and biological activities of some plant extracts of African Combretum Loefl., Terminalia L. and Pteleopsis Engl. Species (Combretaceae). Academic Dissertation 1–183Google Scholar
  17. Fyhrquist P, Mwasumbi L, Hæggström CA, Vuorela H, Hiltunen R, Vuorela P (2002) Ethnobotanical and antimicrobial investigation on some species of Terminalia and Combretum (Combretaceae) growing in Tanzania. J Ethnopharmacol 79:169–177PubMedCrossRefGoogle Scholar
  18. Gabe M (1968) Techniques histologiques. Masson and Cie, Paris, p 241Google Scholar
  19. Hardman RR, Sofowora EA (1972) Antimony trichloride as a test reagent for steroids. Especially diosgenin and yamogenin, in plant tissue. Stain Technol 47:205–208PubMedGoogle Scholar
  20. Jensen WA (1962) Botanical histochemistry: principles and practice. WH Freeman, San FranciscoGoogle Scholar
  21. Johansen DA (1940) Plant microtechnique. McGraw-Hill, New YorkGoogle Scholar
  22. Judd WS, Campbell CS, Kellogg EA, Stevens PI, Donoghue MJ (2006) Plant Systematics: a phylogenetic approach (third edition). Sinauer Associates, Massachusetts, pp 412–416Google Scholar
  23. Katerere DR, Gray AI, Nash J, Waigh RD (2003) Anti-microbial activity of pentacyclic triterpenes isolated from African Combretaceae. Phytochemistry 63:81–88PubMedCrossRefGoogle Scholar
  24. Lawton JR, Rogers CB (1991) Localisation of triterpenoids in young leaves of Combretum molle. Electron Microsc Soc S Afr 21:27–28Google Scholar
  25. Lison L (1960) Histochemie et cytochemie animals. Principes et methods volume I and II. Gauthier-Villars, ParisGoogle Scholar
  26. Mabberley DJ (1997) The plant-book: a portable dictionary of the vascular plants, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  27. Mace ME, Bell AA, Stipanovic RD (1974) Histochemistry and isolation of gossypol and related terpenoids in roots of cotton seedlings. Phytopathology 64:1297–1302CrossRefGoogle Scholar
  28. Masoko P, Picard J, Eloff JN (2007) The antifungal activity of twenty-four southern African Combretum species (Combretaceae). S Afr J Bot 73:173–183CrossRefGoogle Scholar
  29. Neuwinger HD (2000) African traditional medicine. A dictionary of plant use and applications. Medpharm Scientific, Stuttgart, p 589Google Scholar
  30. Pearse AGE (1985) Histochemistry theoretical and applied, 4th edn. Churchill Livingstone, LondonGoogle Scholar
  31. Pegel KA, Rogers CB (1985) The characterization of mollic acid-3β-d-xyloside and its genuine aglycon mollic acid, two novel 1α-hydroxycycloartenoids from Combretum molle. J Chem Soc Perkin Trans 1:1711–1715CrossRefGoogle Scholar
  32. Pignatti S (1982) Flora d’ Italia, vol 1. Edagricole, Bologna 349–350Google Scholar
  33. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212PubMedCrossRefGoogle Scholar
  34. Robson NKB (1977) Studies in the genus Hypericum L (Guttiferae). I. Infrageneric classification. Bull Br Mus Nat Hist Bot 5:293–355Google Scholar
  35. Robson NKB (1981) Studies in the genus Hypericum L. (Guttiferae) 2. Characters of the genus. Bull Br Mus Nat Hist Bot 8:55–226Google Scholar
  36. Rogers CB, Coombes PH (2001) Mollic acid and its glycosides in the trichome secretions of Combretum petrophilum. Biochem Sys Ecol 29:329–330CrossRefGoogle Scholar
  37. Rogers CB, Verotta L (1996) Chemistry and biological properties of the African Combretaceae. In: Hostettmann K, Chinyanganya F, Maillard M, Wolfender JL (eds) Chemistry biological and pharmacological properties of African medicinal plants. University of Zimbabwe Publications, Harare, pp 121–141Google Scholar
  38. Schnepf E (1974) Gland cells. In: Robard AW (ed) Dynamics aspect of plant ultrastructure. McGraw-Hill, New YorkGoogle Scholar
  39. Spurr AR (1969) A low viscosity epoxy embedding medium for electron microscopy. J Ultrastruct Res 26:31–43PubMedCrossRefGoogle Scholar
  40. Stace CA (1969) The significance of the leaf epidermis in the taxonomy of the Combretaceae, II. The genus Combretum subgenus Combretum in Africa. Bot J Linn Soc 62(2):131–168CrossRefGoogle Scholar
  41. Stace CA (2007) The families and genera of vascular plants, 1, vol 9, Flowering Plants Eudicots, pp 67–82Google Scholar
  42. Steenkamp V, Fernandes AC, Van Rensburg CEJ (2007) Screening of Venda medicinal plants for antifungal activity against Candida albicans. S Afr J Bot 73:256–258CrossRefGoogle Scholar
  43. Todd WJ (1986) Ultrastructure techniques for microorganisms. In Aldrich HC, Todd WJ (eds.), New York, Plenum Press, p 87Google Scholar
  44. Ventrella MC, Marinho CR (2008) Morphology and histochemistry of glandular trichomes of Cordia verbenacea DC. (Boraginaceae) leaves. Revista Brasileira Botanica 31(3):457–467CrossRefGoogle Scholar
  45. Werker E (2000) Trichome diversity and development. Adv Bot Res 31:1–35CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.School of Biological and Conservation Sciences KwaZulu-Natal UniversityDurbanSouth Africa
  2. 2.Botany Department, Faculty of ScienceSuez Canal UniversitySuezEgypt
  3. 3.Geography Programme, School of Distance Education Sains Malaysia UniversityMindenMalaysia

Personalised recommendations