Skip to main content
Log in

Shift towards autogamy in the extremely narrow endemic Aquilegia paui and comparison with its widespread close relative A. vulgaris (Ranunculaceae)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Aquilegia paui is an extremely narrowly endemic species from the northeastern Iberian Peninsula. It is restricted to a few populations with a reduced number of individuals living in summit rock cliffs. It is studied and compared to the widespread Aquilegia vulgaris to assess differences in their breeding system and pollination ecology, expected by their differences in flower morphology and by their habitat divergence. Pollinator exclusion experiments showed the capacity of A. paui to reach a full seed set in the absence of pollinators, whereas A. vulgaris notably reduced its reproductive success under these conditions. At the same time, no insect visits were detected in A. paui, whereas A. vulgaris was frequently visited, mainly by bumblebees and flies. Thus, an evolutionary shift toward autogamy in A. paui is discussed in relation to enhanced reproductive assurance. Additionally, we address reproductive isolation mechanisms that nowadays keep A. paui and A. vulgaris separated in spite of their ability to intercross and the existence of contact areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aigner PA (2004) Ecological and genetic effects on demographic processes: pollination, clonality and seed production in Dithyrea maritima. Biol Conserv 116:27–34

    Article  Google Scholar 

  • Aizen MA, Harder LD (2007) Expanding the limits of the pollen-limitation concept: effects of pollen quantity and quality. Ecology 88:271–281

    Article  PubMed  Google Scholar 

  • Alcántara JM, Bastida JM, Rey PJ (2010) Linking divergent selection on vegetative traits to environmental variation and phenotypic diversification in the Iberian columbines (Aquilegia). J Evol Biol 23:1216–1233

    Article  Google Scholar 

  • Armbruster WS, Mulder CPH, Baldwin BG, Kalisz S, Wessa B, Nute H (2002) Comparative analysis of late floral development and mating-system evolution in tribe Collinsieae (Scrophulariaceae s.l.) 1. Am J Bot 89:37–49

    Article  PubMed  Google Scholar 

  • Arrigoni PV, Nardi E (1977) Endemic plants of Sardinia, Italy. Part 19–20. Boll Soc Sarda Sci Nat 17:215–226

    Google Scholar 

  • Barrett SCH (2002) The evolution of plant sexual diversity. Nat Rev Genet 3:274–284

    Article  PubMed  CAS  Google Scholar 

  • Barrett SCH (2008) Major evolutionary transitions in flowering plant reproduction: an overview. Int J Plant Sci 169:1–5

    Article  Google Scholar 

  • Blanché C, Molero J, Rovira AM, Simon J, Bosch M, Sàez L, López-Pujol J, Orellana MR (2005) Estudi bàsic sobre l’estat de conservació, biologia de poblacions i propostes de protecció per a Aquilegia paui. Memòria del conveni entre el Departament de Medi Ambient i Habitatge de la Generalitat de Catalunya i la Universitat de Barcelona Fundació Bosch i Gimpera (Projecte FBG-303608). Barcelona

  • Bolòs O, Vigo J (1984) Flora dels Països Catalans. Barcino, Barcelona

    Google Scholar 

  • Brunet J, Sweet HR (2006) The maintenance of selfing in a population of the rocky mountain columbine. Int J Plant Sci 167:213–219

    Article  Google Scholar 

  • Chase VC, Raven PH (1975) Evolutionary and ecological relationships between Aquilegia formosa and Aquilegia pubescens (Ranunculaceae) two perennial plants. Evolution 29:474–486

    Article  Google Scholar 

  • Cheptou PO (2004) Allee effect and self-fertilization in hermaphrodites: reproductive assurance in demographically stable populations. Evolution 58:2613–2621

    PubMed  Google Scholar 

  • Cruden RW (1977) Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31:32–46

    Article  Google Scholar 

  • Cruden RW (2000) Pollen grains: why so many? Plant Syst Evol 222:143–165

    Article  Google Scholar 

  • Cullen J, Heywood VH (1964) Aquilegia L. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europaea, vol 1. Cambridge University Press, Cambridge, pp 238–240

    Google Scholar 

  • Dafni A, Pacini E, Nepi M (2005) Pollen and stigma biology. In: Dafni A, Kevan PG, Husband BC (eds) Practical pollination biology. Enviroquest, Cambridge, pp 83–146

    Google Scholar 

  • Dar AR, Dar GH, Reshi Z (2006) Recovery and restoration of some critically endangered endemic angiosperms of the Kashmir Himalaya. J Biol Sci 6:985–991

    Article  Google Scholar 

  • Darwin C (1876) The effects of cross- and self-fertilisation in the vegetable kingdom. John Murray, London

    Google Scholar 

  • Darwin C (1877) The different forms of flowers on plants of the same species. John Murray, London

    Google Scholar 

  • Debussche M, Thompson JD (2003) Habitat differentiation between two closely related Mediterranean plant species, the endemic Cyclamen balearicum and the widespread C. repandum. Acta Oecol 24:35–45

    Article  Google Scholar 

  • Delesalle VA, Mazer SJ, Paz H (2008) Temporal variation in the pollen:ovule ratios of Clarkia (Onagraceae) taxa with contrasting mating systems: field populations. J Evol Biol 21:310–323

    PubMed  CAS  Google Scholar 

  • Díaz-González TE (1986) Aquilegia L. In: Castroviejo S, Laínz M, López-González G, Montserrat P, Muñoz-Garmendia F, Paiva J, Villar L (eds) Flora Ibérica, vol 1. Real Jardín Botánico de Madrid, Madrid, pp 376–387

    Google Scholar 

  • DOGC (2008) Decret 172/2008, de 26 d’agost, de creació del Catàleg de flora amenaçada de Catalunya. DOGC 5204:65881–65895

    Google Scholar 

  • Eckert CG, Herlihy CR (2004) Using a cost-benefit approach to understand the evolution of self-fertilization in plants: the perplexing case of Aquilegia canadiensis (Ranunculaceae). Plant Species Biol 19:159–173

    Article  Google Scholar 

  • Fenster CB, Marten-Rodriguez S (2007) Reproductive assurance and the evolution of pollination specialization. Int J Plant Sci 168:215–228

    Article  Google Scholar 

  • Font X (2008) Mòdul Flora i Vegetació. Banc de Dades de Biodiversitat de Catalunya. Generalitat de Catalunya i Universitat de Barcelona. http://biodiver.bio.ub.es/biocat

  • Font Quer P (1920) Contribució al coneixement de la flora catalana occidental. Treb Mus Hist Nat Barcelona v. ser Bot 3:193–223

    Google Scholar 

  • Fulton M, Hodges SA (1999) Floral isolation between Aquilegia formosa and Aquilegia pubescens. Proc R Soc Lond Ser B Biol Sci 266:2247–2252

    Article  Google Scholar 

  • Gómez JM (2002) Self-pollination in Euphrasia willkommii Freyn (Scrophulariaceae), an endemic species from the alpine of the Sierra Nevada (Spain). Plant Syst Evol 232:63–71

    Article  Google Scholar 

  • Goodwillie C, Kalisz S, Eckert CG (2005) The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annu Rev Ecol Evol Syst 36:47–79

    Article  Google Scholar 

  • Grant V (1952) Isolation and hybridization between Aquilegia formosa and Aquilegia pubescens. Aliso 2:341–360

    Google Scholar 

  • Grant V (1971) Plant speciation. Columbia University Press, New York

    Google Scholar 

  • Grant V (1993) Origin of floral isolation between ornithophilous and sphingophilous plant species. Proc Natl Acad Sci USA 90:7729–7733

    Article  PubMed  CAS  Google Scholar 

  • Guinochet M, Vilmorin R (1984) Flore de France. Éditions du Centre national de la recherche scientifique, Paris

    Google Scholar 

  • Heywood VH (1954) Critical notes on the flora of Spain. I. Bull Br Mus Nat Hist Bot 1:81–122

    Google Scholar 

  • Hodges SA (1997) Floral nectar spurs and diversification. Int J Plant Sci 158:S81–S88

    Article  Google Scholar 

  • Hodges SA, Arnold ML (1994) Columbines: a geographically widespread species flock. Proc Natl Acad Sci USA 91:5129–5132

    Article  PubMed  CAS  Google Scholar 

  • Hodges SA, Arnold ML (1995) Spurring plant diversification: are floral nectar spurs a key innovation? Proc. R Soc Lond Ser B Biol Sci 262:343–348

    Article  Google Scholar 

  • Hodges SA, Whittall JB, Fulton M, Yang JY (2002) Genetics of floral traits influencing reproductive isolation between Aquilegia formosa and Aquilegia pubescens. Am Nat 159:S51–S60

    Article  PubMed  Google Scholar 

  • Hodges SA, Fulton M, Yang JY, Whittall JB (2003) Verne Grant and evolutionary studies of Aquilegia. New Phytol 161:113–120

    Article  Google Scholar 

  • Huang SQ, Tang LL, Yu Q, Guo YH (2004) Temporal floral sex allocation in protogynous Aquilegia yabeana contrasts with protandrous species: support for the mating environment hypothesis. Evolution 58:1131–1134

    PubMed  Google Scholar 

  • Igic B, Kohn JR (2006) The distribution of plant mating systems: study bias against obligately outcrossing species. Evolution 60:1098–1103

    PubMed  Google Scholar 

  • Jahandiez E, Maire R (1932) Catalogue des Plantes du Maroc. Ed. Minerva, Alger

  • Jain SK (1976) The evolution of inbreeding in plants. Annu Rev Ecol Evol Syst 7:469–495

    Article  Google Scholar 

  • Jürgens A, Witt T, Gottsberger G (2002) Pollen grain numbers, ovule numbers and pollen-ovule ratios in Caryophylloideae: correlation with breeding system, pollination, life form, style number, and sexual system. Sex Plant Reprod 14:279–289

    Article  Google Scholar 

  • Kalisz S, Vogler DW (2003) Benefits of autonomous selfing under unpredictable pollinator environments. Ecology 84:2928–2942

    Article  Google Scholar 

  • Kearns CA, Inouye DW (1993) Techniques for pollination biologists. University Press of Colorado, Niwot

    Google Scholar 

  • Kennedy BF, Elle E (2008) The reproductive assurance benefit of selfing: importance of flower size and population size. Oecologia 155:469–477

    Article  PubMed  Google Scholar 

  • Kephart S, Reynolds RJ, Rutter MT, Fenster CB, Dudash MR (2006) Pollination and seed predation by moths on Silene and allied Caryophyllaceae: evaluating a model system to study the evolution of mutualisms. New Phytol 169:667–680

    Article  PubMed  Google Scholar 

  • Kreyer D, Oed A, Walther-Hellwig K, Frankl R (2004) Are forests potential landscape barriers for foraging bumblebees? Landscape scale experiments with Bombus terrestris agg. and Bombus pasquorum (Hymenoptera, Apidae). Biol Conserv 116:111–118

    Article  Google Scholar 

  • Lavergne S (2003) Les espèces végétales rares ont-elles des caractéristiques écologiques et biologiques qui leur sont propres? Applications à la conservation de la flore en Languedoc-Rousssillon. PhDThesis. Academie de Montpellier. Ecole Nationale Superieure Agronomique de Montpellier, Montpellier

  • Lavergne S, Garnier E, Debussche M (2003) Do rock endemic and widespread plant species differ under the leaf-height-seed plant ecology strategy scheme? Ecol Lett 6:398–404

    Article  Google Scholar 

  • Lavergne S, Thompson JD, Garnier E, Debussche M (2004) The biology and ecology of narrow endemic and widespread plants: a comparative study of trait variation in 20 congeneric pairs. Oikos 107:505–518

    Article  Google Scholar 

  • Lavergne S, Debussche M, Thompson JD (2005) Limitations on reproductive success in endemic Aquilegia viscosa (Ranunculaceae) relative to its widespread congener Aquilegia vulgaris: the interplay of herbivory and pollination. Oecologia 142:212–220

    Article  PubMed  Google Scholar 

  • Lloyd DG, Schoen DJ (1992) Self-fertilization and cross-fertilization in plants, 1. Functional dimensions. Int J Plant Sci 153:358–369

    Article  Google Scholar 

  • Macior LW (1966) Foraging behavior of Bombus (Hymenoptera: Apidae) in relation of Aquilegia pollination. Am J Bot 53:302–309

    Article  Google Scholar 

  • Martinell MC (2010) Biología de la conservación de especies de área de distribución restringida en Cataluña. PhD Thesis. Universitat de Barcelona

  • Martinell MC, Sàez L, Molero J (2007) Taxonomic assessment of the critically endangered narrow endemic Aquilegia paui Font Quer. XII Optima meeting, Pisa

  • Martinell MC, López-Pujol J, Bosch M, Blanché C (2010) Low genetic variability in the rare, recently differentiated Aquilegia paui (Ranunculaceae). Biochem Syst Ecol 38:390–397

    Article  CAS  Google Scholar 

  • Martinell MC, López-Pujol J, Blanché C, Molero J, Sáez L (2011) Conservation assessment of Aquilegia paui (Ranunculaceae): a case study of an extremely narrow endemic. Oryx 45:187–190

    Google Scholar 

  • Medrano M, Castellanos MC, Herrera CM (2006) Comparative floral and vegetative differentiation between two European Aquilegia taxa along a narrow contact zone. Plant Syst Evol 262:209–224

    Article  Google Scholar 

  • Micheneau C, Fournel J, Gauvin-Bialecki A, Pailler T (2008) Auto-pollination in a long-spurred endemic orchid (Jumellea stenophylla) on Reunion Island (Mascarene Archipelago, Indian Ocean). Plant Syst Evol 272:11–22

    Article  Google Scholar 

  • Montalvo A (1992) Relative success of self and outcross pollen comparing mixed- and single donor pollinations in Aquilegia caerulea. Evolution 46:1181–1198

    Article  Google Scholar 

  • Moody-Weis JM, Heywood JS (2001) Pollination limitation to reproductive success in the Missouri evening primrose, Oenothera macrocarpa (Onagraceae). Am J Bot 88:1615–1622

    Article  PubMed  CAS  Google Scholar 

  • Morgan JW (1999) Effects of population size on seed production and germinability in an endangered, fragmented grassland plant. Conserv Biol 13(2):266–273

    Google Scholar 

  • Munz PA (1946) Aquilegia. Gentes Herb 7:1–150

    Google Scholar 

  • Niet T, Johnson SD, Linder HP (2006) Macroevolutionary data suggest a role for reinforcement in pollination system shifts. Evolution 60:1596–1601

    Article  PubMed  Google Scholar 

  • Nold R (2003) Columbines: Aquilegia, Paraquilegia and Semiaguilegia. Timber Press, Portland

    Google Scholar 

  • Ornduff R (1969) Reproductive biology in relation to systematics. Taxon 18:1–33

    Article  Google Scholar 

  • Parsons K, Hermanutz L (2006) Conservation of rare, endemic Braya species (Brassicaceae): breeding system variation, potential hybridization and human disturbance. Biol Conserv 128:201–214

    Article  Google Scholar 

  • Pedersen HÆ, Ehlers BK (2000) Local evolution of obligate autogamy in Epipactis helleborine subsp. neerlandica (Orchidaceae). Plant Syst Evol 223:173–183

    Article  Google Scholar 

  • Porcher E, Lande R (2005) The evolution of self-fertilization and inbreeding depression under pollen discounting and pollen limitation. J Evol Biol 18:497–508

    Article  PubMed  CAS  Google Scholar 

  • Pramzo W (1965) Cytogenetic studies on the genus Aquilegia. IV. Fertility relationships among the Aquilegia species. Acta Soc Bot Pol 34:667–685

    Google Scholar 

  • Preston RE (1986) Pollen-ovule ratios in the Cruciferae. Am J Bot 73:1732–1740

    Article  Google Scholar 

  • Richards AJ (1986) Plant breeding systems. George Allen & Unwin, London

    Google Scholar 

  • Routley MB, Mavraganis K, Eckert CG (1999) Effect of population size on the mating system in a self-compatible, autogamous plant, Aquilegia canadensis (Ranunculaceae). Heredity 82:518–528

    Article  PubMed  Google Scholar 

  • Sàez L, Rosselló JA, Vigo J (1998) Catàleg de plantes vasculars endèmiques, rares o amenaçades de Catalunya. I. Tàxons endèmics. Acta Bot Barc 45:309–321

    Google Scholar 

  • Sakai AK, Weller SG, Wagner WL, Nepokroeff M, Culley TM (2006) Adaptative radiation and evolution of breeding systems in Schiedea (Caryophyllaceae), an endemic Hawaiian genus. Ann Mo Bot Gard 93:49–63

    Article  Google Scholar 

  • Stebbins GL (1974) Flowering plants: evolution above the species level. Belknap Press, Harvard

    Google Scholar 

  • Steven JC, Waller DM (2004) Reproductive alternatives to insect pollination in four species of Thalictrum (Ranunculaceae). Plant Species Biol 19:73–80

    Article  Google Scholar 

  • Tang LL, Yu Q, Sun JF, Huang SQ (2007) Floral traits and isolation of three sympatric Aquilegia species in the Qinling Mountains, China. Plant Syst Evol 267:121–128

    Article  Google Scholar 

  • Thompson JD (2001) How do visitation patterns vary among pollinators in relation to floral display and floral design in a generalist pollination system? Oecologia 126:386–394

    Article  Google Scholar 

  • Thompson JD, Lavergne S, Affre L, Gaudeul M, Debussche M (2005) Ecological differentiation of Mediterranean endemic plants. Taxon 54:967–976

    Article  Google Scholar 

  • Torres L (1989) Flora del Massís del Port. Publicaciones de la Diputació de Tarragona, Tarragona

    Google Scholar 

  • Valdés B, Rejdali M, el Kadmiri AA (2002) Catalogue des plantes vasculaires du nord du Maroc. CSIC, Madrid

    Google Scholar 

  • Walther-Hellwig K, Frankl R (2000) Foraging habitats and foraging distances of bumblebees, Bombus spp. (Hymenoptera, Apidae), in an agricultural landscape. J Appl Entomol 124:299–306

    Article  Google Scholar 

  • Whittall JB, Medina-Marino A, Zimmer EA, Hodges SA (2006) Generating single-copy nuclear gene data for a recent adaptive radiation. Mol Phylogenet Evol 39:124–134

    Article  PubMed  CAS  Google Scholar 

  • Wyatt R (1984) The evolution of self-pollination in granite outcrop species of Arenaria (Caryophyllaceae), I: morphological correlates. Evolution 38:804–816

    Article  Google Scholar 

  • Yu Q, Huang SQ (2006) Flexible stigma presentation assists context-dependent pollination in a wild columbine. New Phytol 169:237–241

    Article  PubMed  Google Scholar 

  • Yu Q, Guo YH, Huang SQ (2005) Characters of stigma in three Aquilegia species. Acta Phytotaxon Sin 43:513–516

    Article  Google Scholar 

  • Zhang L, Barrett SCH, Gao JY, Chen J, Cole WW, Liu Y, Bai ZL, Li QJ (2005) Predicting mating patterns from pollination syndromes: the case of “sapromyiophily” in Tacca chantrieri (Taccaceae). Am J Bot 92:517–524

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Julià Molero, Dr. Llorenç Sáez, Joan Carles Baiges and Marta Melé for their assistance in field work as well as Maria Navarro for her aid in the sample analysis. The staff of Els Ports Natural Park helped in the development of this research and partially financed it. This work was also supported by projects FBG-303608 (Generalitat de Catalunya) and CGL2007-60475/BOS (Ministerio de Educación y Ciencia), and by a BRD fellowship (Univeristat de Barcelona) awarded to M. Carmen Martinell.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Carmen Martinell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinell, M.C., Rovira, A., Blanché, C. et al. Shift towards autogamy in the extremely narrow endemic Aquilegia paui and comparison with its widespread close relative A. vulgaris (Ranunculaceae). Plant Syst Evol 295, 73–82 (2011). https://doi.org/10.1007/s00606-011-0463-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-011-0463-x

Keywords

Navigation