Skip to main content

A molecular phylogenetic assessment of the advanced Asiatic and Malesian didymocarpoid Gesneriaceae with focus on non-monophyletic and monotypic genera

Abstract

Based on a considerably enlarged sampling, a phylogenetic analysis of the largest group of didymocarpoid Gesneriaceae, the “advanced Asiatic and Malesian genera”, was performed, covering all but 3 of the 60 genera presently recognised in this group (20 of these, mostly from China, are monotypic). The results suggest that no fewer than 17 out of the 57 genera examined are poly- (or rarely para-)phyletic. Highly polyphyletic are Briggsia, Chirita, Henckelia and Raphiocarpus. Only a dozen of the non-monotypic genera (including the three species-richest genera, Cyrtandra, Aeschynanthus and Agalmyla) are confirmed as monophyletic entities, though some exhibit considerable genetic variation. For eight genera, no statement can be made, as only one (of two or several) species was included in the analysis. For a dozen of the (particularly Chinese) monotypic genera a close relationship (or possible congenerity) with other genera was found. In China, only Allostigma, Cathayanthe, Conandron and Metapetrocosmea seem to have no strong affinities to other genera, indicating that they represent phylogenetically isolated lineages or represent remnants of previously larger and earlier diversified groups. The present study forms the foundation for targeted molecular, morphological and phytogeographic studies of the polyphyletic and monotypic genera and particular of clades of genera with interrelations uncovered here for the first time.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Notes

  1. Originally, the genus was established as monotypic with C. coccinea (Li 1982) and characterised by the presence of red, long-tubed flowers with a four-lobed upper lip and single-lobed lower lip. Burtt (2001b) transferred the generically misplaced Didymocarpus bonii to Calcareoboea, though it did not match any of the floral characters mentioned. In the same paper he also announced the transfer of Didymocarpus hancei to Calcareoboea, but this action was never taken.

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723

    Article  Google Scholar 

  • Alfaro ME, Zoller S, Lutzoni F (2003) Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov Chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Mol Biol Evol 20:255–266

    PubMed  Article  CAS  Google Scholar 

  • Atkins H, Preston J, Cronk QCB (2001) A molecular test of Huxley’s line: Cyrtandra (Gesneriaceae) in Borneo and the Philippines. Biol J Linn Soc Lond 72:143–159

    Article  Google Scholar 

  • Bentham G (1876) Gesneriaceae. In: Bentham G, Hooker JD (eds) Genera Plantarum, vol 2, part 2. Lovell Reeve & Co., London, pp 990–1025

    Google Scholar 

  • Bramley GLC, Pennington RT, Zakaria R, Tjitrosoedirdjo SS, Cronk QCB (2004) Assembly of tropical plant diversity on a local scale: Cyrtandra (Gesneriaceae) on Mount Kerinci, Sumatra. Biol J Linn Soc Lond 81:49–62

    Article  Google Scholar 

  • Burtt BL (1956) An independent genus for Oreocharis primuloides. Baileya 4:161–162

    Google Scholar 

  • Burtt BL (1958) Studies in the Gesneriaceae of the Old World. XII. Opithandra, a genus with sterile anticous stamens. Notes Roy Bot Gard Edinburgh 22:300–303

    Google Scholar 

  • Burtt BL (1960) Studies in the Gesneriaceae of the Old World XVIII. The controversy on Phylloboea. Notes Roy Bot Gard Edinburgh 23:89–90

    Google Scholar 

  • Burtt BL (1962) Studies in the Gesneriaceae of the Old World XXIV. Tentative keys to the tribes and genera. Notes Roy Bot Gard Edinburgh 24:205–220

    Google Scholar 

  • Burtt BL (1968) Studies in the Gesneriaceae of the Old World XXIX. A reconsideration of generic limits in tribe Trichosporeae. Notes Roy Bot Gard Edinburgh 29:219–225

    Google Scholar 

  • Burtt BL (1970) Studies in the Gesneriaceae of the Old World. XXXI. Some aspects of functional evolution. Notes Roy Bot Gard Edinburgh 30:1–10

    Google Scholar 

  • Burtt BL (1975) Studies in the Gesneriaceae of the Old World XL. The genus Loxostigma. Notes Roy Bot Gard Edinburgh 34:101–105

    Google Scholar 

  • Burtt BL (1984) Studies in the Gesneriaceae of the Old World XLVII. Revised generic concepts for Boea and its allies. Notes Roy Bot Gard Edinburgh 41:401–452

    Google Scholar 

  • Burtt BL (1998) Climatic accomodation and phytogeography of the Gesneriaceae of the Old World. In: Mathew P, Sivadasan M (eds) Diversity and taxonomy of tropical flowering plants. Mentor Books, Kerala, pp 1–27

    Google Scholar 

  • Burtt BL (2001a) A survey of the genus Cyrtandra (Gesneriaceae). Phytomorphology, Golden Jubilee Issue:393–404

  • Burtt BL (2001b) Flora of Thailand: annotated checklist of Gesneriaceae. Thai Forest Bulletin (Botany) 29:81–109

    Google Scholar 

  • Burtt BL, Wiehler H (1995) Classification of the family Gesneriaceae. Gesneriana 1:1–4

    Google Scholar 

  • Chapman A (2003) Relationships in the genus Agalmyla (Gesneriaceae)––inferred from molecular, morphological and cytological data. MSc thesis, University of Edinburgh, UK

  • Clark JR, Ree RH, Alfaro ME, King MG, Wagner WL, Roalson EH (2008) A comparative study in ancestral range reconstruction methods: retracing the uncertain histories of insular lineages. Syst Biol 57:693–707

    PubMed  Article  Google Scholar 

  • Cronk QCB, Kiehn M, Wagner WL, Smith JF (2005) Evolution of Cyrtandra (Gesneriaceae) in the Pacific ocean: the origin of a supertramp clade. Amer J Bot 92:1017–1024

    Article  Google Scholar 

  • Cummings MP, Handley SA, Myers DS, Reed DL, Rokas A, Winka K (2003) Comparing bootstrap and posterior probability values in the four-taxon case. Syst Biol 52:477–487

    PubMed  Article  Google Scholar 

  • Darbyshire I (2006) Gesneriaceae. In: Beentje HJ, Ghazanfar SA (eds) Flora of tropical East Africa. Royal Botanic Gardens Kew, London, pp 1–76

    Google Scholar 

  • Denduangboripant J, Cronk QCB (2000) High intraindividual variation in internal transcribed spacer sequences in Aeschynanthus (Gesneriaceae): implications for phylogenetics. Proc R Soc Lond B Biol Sci 267:1407–1415

    Article  CAS  Google Scholar 

  • Denduangboripant J, Cronk QCB (2001) Evolution and alignment of the hypervariable arm 1 of Aeschynanthus (Gesneriaceae) ITS2 nuclear ribosomal DNA. Mol Phyl Evol 20:163–172

    Article  CAS  Google Scholar 

  • Denduangboripant J, Mendum M, Cronk QCB (2001) Evolution in Aeschynanthus (Gesneriaceae) inferred from ITS sequences. Plant Syst Evol 228:181–197

    Article  CAS  Google Scholar 

  • Erixon P, Svennblad B, Britton T, Oxelman B (2003) Reliability of Bayesian posterior probabilities and bootstrap frequencies in phylogenetics. Syst Biol 52:665–673

    PubMed  Article  Google Scholar 

  • Fang D, Qin DH (2004) Wentsaiboea D.Fang & D.H.Qin, a new genus of the Gesneriaceae from Guangxi, China. Acta Phytotax Sin 42:533–536

    Google Scholar 

  • Farris JS (1989) The retention index and homoplasy excess. Syst Zool 38:406–407

    Article  Google Scholar 

  • Farris J, Källersjö SM, Kluge AG, Bult C (1995a) Constructing a significance test for incongruence. Syst Biol 44:570–572

    Google Scholar 

  • Farris J, Källersjö SM, Kluge AG, Bult C (1995b) Testing significance of incongruence. Cladistics 10:315–319

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence-limits on phylogenies––an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fritsch K (1893–94) Gesneriaceae. In: Engler A, Prantl K (eds) Die Natürlichen Pflanzenfamilien, vol 4 (3b). Engelmann, Leipzig, Germany, pp 133–185

  • Hilliard OM (2004) A revision of Chirita sect. Liebigia (Gesneriaceae). Edinb J Bot 60:361–387

    Google Scholar 

  • Hilliard OM, Burtt BL (2002) The genus Agalmyla (Gesneriaceae––Cyrtandroideae). Edinb J Bot 59:1–210

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics 17:754–755

    PubMed  Article  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2007) MrBayes, version 3.1.2. Bayesian analysis of phylogeny. Application program distributed by the authors under the GNU General Public License. http://mrbayes.csit.fsu.edu/

  • Kiehn M, Weber A (1998) Chromosome numbers of Malayan and other paleotropical Gesneriaceae. II. Tribes Trichosporeae, Cyrtandreae and Epithemateae. Beitr Biol Pflanzen 70:445–470 (“1997”, publ. 26. XI. 1998)

    Google Scholar 

  • Kluge AG, Farris JS (1969) Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32

    Article  Google Scholar 

  • Lewis PO (2001) Phylogenetic systematics turns over a new leaf. Trends Ecol Evol 16:30–37

    PubMed  Article  Google Scholar 

  • Li H (1982) Two new genera and one little known genus of Gesneriaceae from Yunnan. Acta Bot Yunnan 4:241–247

    CAS  Google Scholar 

  • Li JM, Wang YZ (2007) Phylogenetic reconstruction among species of Chiritopsis and Chirita sect. Gibbosaccus (Gesneriaceae) based on nrDNA ITS and cpDNA trnL-F sequences. Syst Bot 32:888–898

    Article  Google Scholar 

  • Liu Y, Xu WB, Pan B (2010) Wentsaiboea tiandengensis sp.nov. and Wentsaiboea luochengensis sp. nov. (Gesneriaceae) from karst caves in Guangxi, southern China. Nordic J Bot 28:739–745

  • Middleton DJ (2007) A revision of Aeschynanthus (Gesneriaceae) in Thailand. Edinb J Bot 64:363–429

    Google Scholar 

  • Möller M, Cronk QCB (2001a) Evolution of morphological novelty: a phylogenetic analysis of growth patterns in Streptocarpus (Gesneriaceae). Evolution 55:918–929

    PubMed  Article  Google Scholar 

  • Möller M, Cronk QCB (2001b) Phylogenetic studies in Streptocarpus (Gesneriaceae): reconstruction of biogeographic history and distribution patterns. Syst Geogr Pl 71:545–555

    Article  Google Scholar 

  • Möller M, Clokie M, Cubas P, Cronk QCB (1999) Integrating molecular phylogenies and developmental genetics: a Gesneriaceae case study. In: Hollingsworth PM, Bateman RM, Gornall RJ (eds) Molecular systematics and plant evolution. Taylor & Francis, London, pp 375–402

    Google Scholar 

  • Möller M, Pfosser M, Jang CG, Mayer V, Clark A, Hollingsworth ML, Barfuss MHJ, Wang YZ, Kiehn M, Weber A (2009) A preliminary phylogeny of the ‘didymocarpoid Gesneriaceae’ based on three molecular data sets: Incongruence with available tribal classifications. Amer J Bot 96:989–1010

    Article  Google Scholar 

  • Nixon KC (1999) The Parsimony Ratchet, a new method for rapid parsimony analysis. Cladistics 15:407–414

    Article  Google Scholar 

  • Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Sweden

    Google Scholar 

  • Sikes DS, Lewis PO (2001) PAUPRat beta software, version 1: PAUP* implementation of the parsimony ratchet. Distributed by the authors. Department of Ecology and Evolutionary Biology. University of Connecticut, Storrs

    Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer. Sunderland, Massachusetts

    Google Scholar 

  • Wang WT (1985) The second revision of the genus Petrocosmea (Gesneriaceae). Acta Bot Yunnan 7:49–68

    Google Scholar 

  • Wang WT, Pan KY (1982) Notulae de Gesneriaceis Sinensibus (III). Bull Bot Res, Harbin 2:121–152

    Google Scholar 

  • Wang WT, Pan KY, Li ZY (1990) Gesneriaceae. In: Wang WT (ed) Flora Reipublicae Popularis Sinicae, vol 69. Science Press, Beijing, pp 125–581

    Google Scholar 

  • Wang WT, Pan KY, Li ZY, Weitzman Al, Skog LE (1998) Gesneriaceae. In: Wang WT (ed) Flora of China. Science Press, Beijing, pp 244–401

    Google Scholar 

  • Wang YZ, Liang RH, Wang BH, Li JM, Qiu ZJ, Li ZY, Weber A (2010) Origin and phylogenetic relationships of the Old World Gesneriaceae with actinomorphic flowers inferred from ITS and trnL-trnF sequences. Taxon 59:1044–1052

    Google Scholar 

  • Weber A (2003) What is morphology and why is it time for its renaissance in plant systematics? Regnum Vegetabile. In: Stuessy T, Mayer V, Hörandl E (eds) Deep morphology: toward a renaissance of morphology in plant systematics, vol 171. A.R.G. Gantner Verlag, Ruggell, pp 3–32

  • Weber A (2004) Gesneriaceae. In: Kubitzki K (ed) The families and genera of vascular plants, vol. 7. Kadereit JW (vol. ed.) Dicotyledons. Lamiales (except Acanthaceae incl. Avicenniaceae). Springer, Berlin, pp 63–158

    Google Scholar 

  • Weber A, Burtt BL (1998a) Didissandra: redefinition and partition of an artifical genus of Gesneriaceae. Beitr Biol Pflanzen 70:153–177 (“1997”, publ. 26. XI. 1998)

    Google Scholar 

  • Weber A, Burtt BL (1998b) Revision of the genus Ridleyandra (Gesneriaceae). Beitr Biol Pflanzen 70:225–273 (“1997”, publ. 26. XI. 1998)

    Google Scholar 

  • Weber A, Burtt BL (1998c) Remodelling of Didymocarpus and associated genera (Gesneriaceae). Beitr Biol Pflanzen 70:293–363 (“1997”, publ. 26. XI. 1998)

    Google Scholar 

  • Weber A, Skog LE (2007) The genera of Gesneriaceae. Basic information with illustration of selected species. http://www.genera-gesneriaceae.at

  • Wei YG (2004) Paralagarosolen Y.G. Wei, a new genus of the Gesneriaceae from Guangxi, China. Acta Phytotax Sin 42:528–532

    Google Scholar 

  • Wei YG, Wen F, Chen WH, Shui YM, Möller M (2010) Litostigma, a new genus from China: a morphological link between basal and derived didymocarpoid Gesneriaceae. Edinb J Bot 67:161–184

    Article  Google Scholar 

  • Yang Z, Rannala B (1997) Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo method. Mol Biol Evol 14:717–724

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to many people contributing at various levels to the successful completion of the work presented here. MM is particularly grateful to the director of the Kunming Institute of Botany (KIB, CAS), Prof Dr. D.Z. Li, and to Dr. L.M. Gao for technical and scientific support while staying in China. For providing DNA samples and sequences our thanks go to F. Wen, L.M. Gao, N.B. Ming, Y.M. Shui, Y.Z. Wang, D.W. Zhang, R. Kiew, M.A.M. Hairuf, Y.T. Leong, A.R. Rafidah, Y.T. Leong, L.C. Lu, J. Sang, C. Geri, P. Triboun, G. Kokubugata, B. Adhikari, D.J. Middleton, C. Puglisi, G. Argent and M. Mendum (†). Last but not least, thanks to the horticulturists at the Royal Botanic Garden Edinburgh (RBGE), S. Scott and S. Barber, for expertly maintaining and curating the living Gesneriaceae collections at RBGE. We also would like to thank A. Chautems and an anonymous reviewer for critical comments on the manuscript. The work was carried out in cooperation between the University of Vienna (supported by the Austrian Science Fonds, FWF-Project no. P-13107-Bio) and the RBGE. RBGE is supported by the Scottish Government Rural and Environment Research and Analysis Directorate (RERAD). Fieldwork of MM was supported by the Davis Expedition Fund of the University of Edinburgh, Oleg Polunin Memorial Fund, Percy Sladen Memorial Fund, the Royal Horticultural Society, the RBGE Expedition Fund and the Science & Technology Innovation Program of Guangxi Academy of Sciences Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Möller.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Möller, M., Forrest, A., Wei, YG. et al. A molecular phylogenetic assessment of the advanced Asiatic and Malesian didymocarpoid Gesneriaceae with focus on non-monophyletic and monotypic genera. Plant Syst Evol 292, 223–248 (2011). https://doi.org/10.1007/s00606-010-0413-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-010-0413-z

Keywords

  • Bayesian inference analysis
  • ITS
  • Maximum parsimony
  • Molecular phylogeny
  • Monotypic genera
  • Old World didymocarpoid Gesneriaceae
  • Taxonomy
  • trnL-F intron-spacer