Skip to main content

Does sex make a difference? Genetic diversity and spatial genetic structure in two co-occurring species of Gagea (Liliaceae) with contrasting reproductive strategies

Abstract

Gagea lutea and G. spathacea are spring geophytes naturally co-occurring in woodlands, characterised by contrasting reproductive strategies probably caused by divergent ploidy levels. The hexaploid G. lutea relies on vegetative reproduction by subterranean bulbils in young stages but completely switches to sexual reproduction once a certain bulb size is attained. The nonaploid G. spathacea seems to be sterile and reproduces only vegetatively; the plants continue to form bulbils even in the rare event of flowering. This study used AFLP genotyping to investigate the consequences of these reproductive strategies for genetic diversity. For 150 and 100 samples from three Western Pomeranian populations of G. lutea and G. spathacea, respectively, AFLP fingerprints were analysed for three different spatial scales, the patch, the transect, and the region. Applying a threshold for genotypic identity of <0.05 simple matching distance, 22–30 genets were detected in the three G. lutea populations, with all genets confined to single populations. Clonal genets consisted of 2–9 samples and extended over up to 28 m, but never occupied the whole length of a transect; 67–75% of all patches had different genets. Genetic distances between genets within populations were similar to those recorded between populations. Genotyping of G. spathacea revealed a single clonal genet for all three populations sampled within a distance of 30 km. The absent genetic diversity confirms the suspected sexual sterility. Gagea spathacea seems to be one of the few non-apomictic, fully clonal vascular plants able to occupy a significant range solely by dispersal of vegetative diaspores.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Arnaud-Haond S, Alberto F, Teixeira S, Procaccini G, Serrao EA, Duarte CM (2005) Assessing genetic diversity in clonal organisms: low diversity or low resolution? Combining power and cost efficiency in selecting markers. J Hered 96:434–440

    PubMed  Article  CAS  Google Scholar 

  2. Arnaud-Haond S, Duarte CM, Alberto F, Serrao EA (2007) Standardizing methods to address clonality in population studies. Mol Ecol 16:5115–5139

    PubMed  Article  CAS  Google Scholar 

  3. Barrat-Segretain MH (1996) Strategies of reproduction, dispersion, and competition in river plants: a review. Vegetatio 123:13–37

    Article  Google Scholar 

  4. Bauert MR, Kalin M, Baltisberger M, Edwards PJ (1998) No genetic variation detected within isolated relict populations of Saxifraga cernua in the Alps using RAPD markers. Mol Ecol 7:1519–1527

    Article  CAS  Google Scholar 

  5. Bonin A, Bellemain E, Eidesen PB, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273

    PubMed  Article  CAS  Google Scholar 

  6. Brochmann C, Håpnes A (2001) Reproductive strategies in some arctic Saxifraga (Saxifragaceae), with emphasis on the narrow endemic S. svalbardensis and its parental species. Bot J Linn Soc 137:31–49

    Article  Google Scholar 

  7. Dorken ME, Eckert CG (2001) Severely reduced sexual reproduction in northern populations of a clonal plant, Decodon verticillatus (Lythraceae). J Ecol 89:339–350

    Article  Google Scholar 

  8. Douhovnikoff V, Dodd RS (2003) Intra-clonal variation and a similarity threshold for identification of clones: application to Salix exigua using AFLP molecular markers. Theor Appl Genet 106:1307–1315

    PubMed  CAS  Google Scholar 

  9. Eckert CG (2002) The loss of sex in clonal plants. Evol Ecol 15:501–520

    Article  Google Scholar 

  10. Eckert CG, Lui K, Bronson K, Corradini P, Bruneau A (2003) Population genetic consequences of extreme variation in sexual and clonal reproduction in an aquatic plant. Mol Ecol 12:331–344

    PubMed  Article  Google Scholar 

  11. Ellstrand NC, Roose ML (1987) Patterns of genotypic diversity in clonal plant-species. Am J Bot 74:123–131

    Article  Google Scholar 

  12. Fay MF, Lledo MD, Kornblum MM, Crespo MB (1999) From the waters of Babylon? Populus euphratica in Spain is clonal and probably introduced. Biodiv Cons 8:769–778

    Article  Google Scholar 

  13. Frey W, Lösch R (2004) Lehrbuch der Geobotanik. Pflanze und Vegetation in Raum und Zeit, 2nd edn. Elsevier/Spektrum Verlag, Munich

    Google Scholar 

  14. Gabrielsen TM, Brochmann C (1998) Sex after all: high levels of diversity detected in the arctic clonal plant Saxifraga cernua using RAPD markers. Mol Ecol 7:1701–1708

    Article  Google Scholar 

  15. Gargano D, Peruzzi L, Caparelli KF, Cesca G (2007) Preliminary observations on the reproductive strategies in five early-flowering species of Gagea Salisb. (Liliaceae). Bocconea 21:349–358

    Google Scholar 

  16. Henker H (2005) Goldsterne und Stinsenpflanzen in Mecklenburg-Vorpommern. Teil 1: Die Goldsterne von Mecklenburg-Vorpommern unter besonderer Berücksichtigung kritischer und neuer Sippen. Bot Rundbr Mecklenburg-Vorpommern 39:3–90

    Google Scholar 

  17. Hollingsworth ML, Bailey JP (2000) Evidence for massive clonal growth in the invasive weed Fallopia japonica (Japanese Knotweed). Bot J Linn Soc 133:463–472

    Google Scholar 

  18. Honnay O, Bossuyt B (2005) Prolonged clonal growth: escape route or route to extinction? Oikos 108:427–432

    Article  Google Scholar 

  19. Hood GM (2009) PopTools version 3.1.1 (Excel plugin). Available online at http://www.cse.csiro.au/poptools/

  20. Hultén E, Fries M (1986) Atlas of north European vascular plants north of the tropic of cancer. Koeltz, Switzerland

    Google Scholar 

  21. Kalheber H, Kalheber H (1966) Zum Vorkommen des Scheidigen Gelbsterns—Gagea spathacea (HAYNE) GILIB. - im Westerwald. Hess Flor Briefe 15(179):57–58

    Google Scholar 

  22. Kimpton SK, James EA, Drinnan AN (2002) Reproductive biology and genetic marker diversity in Grevillea infecunda (Proteaceae), a rare plant with no known seed production. Aust Syst Bot 15:485–492

    Article  Google Scholar 

  23. Kirschner J, Stepánek J (1996) Modes of speciation and evolution of the sections in Taraxacum. Folia Geobot Phytotax 31:415–426

    Article  Google Scholar 

  24. Ludwig G, May R, Otto C (2007) Verantwortlichkeit Deutschlands für die weltweite Erhaltung der Farn- und Blütenpflanzen—vorläufige Liste. BfN-Skripten 220:1–102

    Google Scholar 

  25. Lynch AJJ, Barnes RW, Cambecedes J, Vaillancourt RE (1998) Genetic evidence that Lomatia tasmanica (Proteaceae) is an ancient clone. Aust J Bot 46:25–33

    Article  Google Scholar 

  26. Maynard Smith J (1978) The evolution of sex. Cambridge University Press, Cambridge

    Google Scholar 

  27. Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794

    Article  Google Scholar 

  28. Mesícek J, Hrouda L (1974) Chromosome numbers in Czechoslovak species of Gagea (Liliaceae). Folia Geobot 9:359–368

    Google Scholar 

  29. Meusel HE, Jäger EJ, Weinert E (1965) Vergleichende Chorologie der zentraleuropäischen Flora. Fischer, Jena

    Google Scholar 

  30. Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol Evol 14:389–394

    PubMed  Article  Google Scholar 

  31. Peakall R, Ebert D, Scott LJ, Meagher PF, Offord CA (2003) Comparative genetic study confirms exceptionally low genetic variation in the ancient and endangered relictual conifer, Wollemia nobilis (Araucariaceae). Mol Ecol 12:2331–2343

    PubMed  Article  CAS  Google Scholar 

  32. Peruzzi L (2003) Contribution to the cytotaxonomical knowledge of Gagea Salisb. (Liliaceae) sect. Foliatae A. Terracc. and synthesis of karyological data. Caryologia 56:115–128

    Google Scholar 

  33. Peruzzi L (2008) Hybridity as a main evolutionary force in the genus Gagea Salisb. (Liliaceae). Plant Biosyst 142:179–184

    Google Scholar 

  34. Peruzzi L, Peterson A, Tison J-M, Peterson J (2008) Phylogenetic relationships of Gagea Salisb. (Liliaceae) in Italy, inferred from molecular and morphological data matrixes. Plant Syst Evol 276:219–234

    Article  Google Scholar 

  35. Peterson A, Levichev IG, Peterson J (2008) Systematics of Gagea and Lloydia (Liliaceae) and infrageneric classification of Gagea based on molecular and morphological data. Mol Phyl Evol 46:446–465

    Article  CAS  Google Scholar 

  36. Peterson A, Harpke D, Peruzzi L, Levichev IG, Tison J-M, Peterson J (2009) Hybridization drives speciation in Gagea (Liliaceae). Plant Syst Evol 278:133–148

    Article  CAS  Google Scholar 

  37. Peterson A, Harpke D, Peruzzi L, Tison J-M, John H, Peterson J (2010) Gagea bohemica (Liliaceae), a highly variable monotypic species within Gagea sect. Didymobulbos. Plant Biosyst 144:308–322

    Google Scholar 

  38. Pfeiffer T (2007) Vegetative multiplication and patch colonisation of Asarum europaeum subsp. europaeum L. (Aristolochiaceae) inferred by a combined morphological and molecular study. Flora 202:89–97

    Google Scholar 

  39. Pfeiffer T, Günzel C, Frey W (2008) Clonal reproduction, vegetative multiplication and habitat colonisation in Tussilago farfara (Asteraceae): a combined morpho-ecological and molecular study. Flora 203:281–291

    Google Scholar 

  40. Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nat Rev Genet 6:847–859

    PubMed  Article  CAS  Google Scholar 

  41. Rogstad SH, Keane B, Beresh J (2002) Genetic variation across VNTR loci in central North American Taraxacum surveyed at different spatial scales. Plant Ecol 161:111–121

    Article  Google Scholar 

  42. Ronsheim ML (1997) Distance-dependent performance of asexual progeny in Allium vineale (Liliaceae). Am J Bot 84:1279–1284

    Article  Google Scholar 

  43. Rozenfeld AF, Arnaud-Haond S, Hernandez-Garcia E, Eguiluz VM, Matias MA, Serrao E, Duarte CM (2007) Spectrum of genetic diversity and networks of clonal organisms. J Roy Soc Interface 4:1093–1102

    PubMed  Article  Google Scholar 

  44. Schnittler M, Eusemann P (2010) Consequences of genotyping errors for estimation of clonality—a case study from Populus euphratica Oliv. (Salicaceae). Evol Ecol 24:1417–1432

  45. Schnittler M, Pfeiffer T, Harter D, Hamann A (2009) Bulbils contra seeds: reproductive investment in two species of Gagea (Liliaceae). Plant Syst Evol 279:29–40

    Article  Google Scholar 

  46. Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629

    PubMed  Article  Google Scholar 

  47. Seybold S (1998) Gagea spathacea (Hayne) Salisbury 1806. In: Sebald O, Seybold S, Philippi G, Wright KM (eds) Die Farn- und Blütenpflanzen Baden-Württembergs. Verlag Eugen Ulmer, Stuttgart, pp 110–111

    Google Scholar 

  48. Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    PubMed  Article  CAS  Google Scholar 

  49. Sneath PHA, Sokal RR (1973) Numerical taxonomy—the principles and practice of numerical classification. Freeman, San Francisco, p 573

    Google Scholar 

  50. Stein N, Herren G, Keller B (2001) A new DNA extraction method for high-throughput marker analysis in a large-genome species such as Triticum aestivum. Plant Breed 120:354–356

    Article  CAS  Google Scholar 

  51. Swofford DL (2002) PAUP*—phylogenetic analysis using parsimony (* and other methods), version 4.0b10. Sinauer, Massachusetts

    Google Scholar 

  52. Tomovic G, Niketic M (2005) Gagea spathacea (Hayne) Salisb. (Liliaceae)—a new species for the flora of Serbia. Arch Biol Sci 57:291–294

    Article  Google Scholar 

  53. Tsujimura N, Ishida K (2008) Isozyme variation under different modes of reproduction in two clonal winter annuals, Sedum rosulato-bulbosum and Sedum bulbiferum (Crassulaceae). Plant Species Biol 23:71–80

    Article  Google Scholar 

  54. Urbanska KM (1992) Populationsbiologie der Pflanzen. Grundlagen, Probleme, Perspektiven. Gustav Fischer, Stuttgart

    Google Scholar 

  55. Weber E (1996) Former and modern taxonomic treatment of the apomictic Rubus complex. Folia Geobot Phytotax 31:373–380

    Article  Google Scholar 

  56. Welk E (2002) Arealkundliche Analyse und Bewertung der Schutzrelevanz seltener und gefährdeter Gefäßpflanzen Deutschlands. Schriftenreihe Vegetationskunde 37:1–337

    Google Scholar 

  57. Westergård M (1936) A cytological study of Gagea spathacea (with a note on the chromosome number and embryo-sac formation in Gagea minima). C R Trav Lab Carlsbergv 21:437–451

    Google Scholar 

  58. Ziegenhagen B, Bialozyt R, Kuhlenkamp V, Schulze I, Ulrich A, Wulf M (2003) Spatial patterns of maternal lineages and clones of Galium odoratum in a large ancient woodland: inferences about seedling recruitment. J Ecol 91:578–586

    Article  Google Scholar 

Download references

Acknowledgments

We want to thank Susanne Starke and several student collaborators for their help in sampling; David Harter, Noreen Formella, and Anna Roschanski for help with DNA extraction and AFLP reactions; and Dr Igor Levichev and Dr Angela Peterson for sharing and discussion of ideas. Permission from environmental authorities (Staatliches Amt für Umwelt und Natur Ueckermünde) to collect plant material in the nature reserve “Eldena” is gratefully acknowledged. This study was supported by a Käthe-Kluth scholarship of the Ernst-Moritz-Arndt-University Greifswald to T.P.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tanja Pfeiffer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pfeiffer, T., Klahr, A., Heinrich, A. et al. Does sex make a difference? Genetic diversity and spatial genetic structure in two co-occurring species of Gagea (Liliaceae) with contrasting reproductive strategies. Plant Syst Evol 292, 189–201 (2011). https://doi.org/10.1007/s00606-010-0404-0

Download citation

Keywords

  • AFLP fingerprinting
  • Gagea lutea
  • Gagea spathacea
  • Genotyping