Skip to main content
Log in

Fractal analysis of leaf-texture properties as a tool for taxonomic and identification purposes: a case study with species from Neotropical Melastomataceae (Miconieae tribe)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Melastomataceae is a common and dominant family in Neotropical vegetation, with high species diversity which leads to a large variation in some morphological structures. Despite this, some species of Melastomataceae are very similar in their external leaf morphology, leading to difficulties in their identification without the presence of reproductive organs. Here we have proposed and tested a computer-aided texture-based approach used to correctly identify and distinguish leaves of some species of Melastomataceae that occur in a region of Neotropical savanna in Southeastern Brazil, also comparing it with other previously proposed approaches. The results demonstrated that our approach may clearly separate the studied species, analyzing the patterns of leaf texture (both adaxial and abaxial surfaces), and achieving better accuracy (100%) than other methods. Our work has suggested that leaf texture properties can be used as a new characteristic for identification, and as an additional source of information in taxonomic and systematic studies. As the method may be supervised by experts, it is also suitable for discrimination of species with high morphological plasticity, improving the automated discrimination task. This approach can be very useful for identification of species in the absence of reproductive material, and is a rapid and powerful tool for plant identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbasi SM, Mokhtarian F, Kittler J (1997) Reliable classification of chrysanthemum leaves through curvature scale space. In: Haar RB, Florack L, Koenderink J, Viergever M (eds) Scale-space theory in computer vision. Lecture notes in computer science, vol 1252. Springer, Berlin, pp 284–295

  • Ash A, Ellis B, Hickey LJ, Johnson K, Wilf P, Wing S (1999) Manual of leaf architecture—morphological description and categorization of dicotyledonous and net-veined monocotyledonous angiosperms by leaf architecture. http://www.peabody.yale.edu/collections/pb/mla/mla.pdf. Accessed 12 June 2008

  • Backes AR, Casanova D, Bruno OM (2009a) A complex network-based approach for boundary shape analysis. Pattern Recognit 42(1):54–67

    Article  Google Scholar 

  • Backes AR, Casanova D, Bruno OM (2009b) Plant leaf identification based on volumetric fractal dimension. Int J Pattern Recognit Artif Intell 23:1145–1160

    Article  Google Scholar 

  • Bailey IW (1951) The use and abuse of anatomical data in the study of phylogeny and classification. Phytomorphology 1:67–69

    Google Scholar 

  • Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight C (2008) Genome size is a strong predictor of cell size and stomatal density in Angiosperms. New Phytol 179:975–986

    Article  PubMed  Google Scholar 

  • Blanco MA, Whitten WM, Penneys DS, Williams NH, Neubig KM, Endara L (2006) A simple and safe method for rapid drying of plant specimens using forced air spaces heaters. Selbyana 27:83–87

    Google Scholar 

  • Bridson D, Forman L (1998) The herbarium handbook. Royal Botanic Gardens, Kew

    Google Scholar 

  • Bruno OM, Plotze RO, Falvo M, Castro M (2008) Fractal dimension applied to plant identification. Inf Science 178(12):2722–2733

    Article  Google Scholar 

  • Camargo EA (2008) O gênero Leandra, seções Carassanae, Niangae e Secundiflorae (Melastomataceae) no Paraná. MSc thesis, Departament of Botany, Paraná Federal University

  • Castro-Esau K, Sánchez-Azofeifa G, Caelli T (2004) Discrimination of lianas and trees with leaf-level hyperspectral data. Remote Sens Environ 90:353–373

    Article  Google Scholar 

  • Dallwitz MJ (1974) A flexible computer program for generating diagnostic keys. Syst Zool 26:50–57

    Article  Google Scholar 

  • Dean M, Ashton PA (2008) Leaf surfaces as a taxonomic tool: the case of Carex section Phacocystis (Cyperaceae) in the British Isles. Plant Syst Evol 237:97–105

    Google Scholar 

  • DeWolf G (1968) Notes on making an herbarium. Arnoldia 28:69–111

    Google Scholar 

  • Dickison WC (2000) Integrative plant anatomy. Academic Press, San Diego

    Google Scholar 

  • Durigan G, Baitello JB, Franco GADC, Siqueira MF (2004) Plantas do Cerrado Paulista: imagens de uma paisagem ameaçada. Editora Página e Letras, São Paulo

  • Endress PK (2003) Morphology and angiosperm systematics in the molecular era. Bot Rev 68:545–570

    Article  Google Scholar 

  • Ferson S, Rohlf FJ, Koehn RK (1985) Measuring shape variation of two-dimensional outlines. Syst Zool 34(1):59–68

    Article  Google Scholar 

  • Goldenberg R (2004) O gênero Miconia (Melastomataceae) no Estado do Paraná, Brasil. Acta Bot Bras 18(4):927–947

    Article  Google Scholar 

  • Goldenberg R, Martin C (2008) Taxonomic notes on South American Miconia (Melastomataceae). HPB 13:223–227

    Article  Google Scholar 

  • Goldenberg R, Penneys DS, Almeda F, Judd WS, Michelangeli FA (2008) Phylogeny of Miconia (Melastomataceae): patterns of stamen diversification in a megadiverse Neotropical genus. Int J Plant Sci 169:963–979

    Article  Google Scholar 

  • Gratani L, Covone F, Larcher W (2006) Leaf plasticity in response to light of three evergreen species of the Mediterranean maquis. Trees 20:549–558

    Article  Google Scholar 

  • Hetherington AM, Woodward FI (2003) The role of stomata in sensing and driving environmental change. Nature 424:901–908

    Article  CAS  PubMed  Google Scholar 

  • Hlwatika CNM, Bhat RB (2002) An ecological interpretation of the difference in leaf anatomy and its plasticity in contrasting tree species in Orange Kloog, table Mountain, South Africa. Ann Bot 89:109–114

    Article  CAS  PubMed  Google Scholar 

  • Holgren PK, Holgren N (1992) Plant specialists index. Koeltz Scientific Books, Königstein

    Google Scholar 

  • Judd WS, Campbell CS, Kellog EA, Stevens PF, Donoghue MJ (2008) Plant systematics: a phylogenetic approach. Sinauer Associates, Sunderland

    Google Scholar 

  • Kaplan LM (1999) Extended fractal analysis for texture classification and segmentation. IEEE Trans Image Process 8(11):1572–1585

    Article  CAS  PubMed  Google Scholar 

  • Klucking EP (1987) Leaf venation patterns v.2: Lauraceae. J. Cramer, Berlin

    Google Scholar 

  • Lee CL, Chen SY (2006) Classification of leaf images. Int J Imag Syst Tech 16(1):15–23

    Article  Google Scholar 

  • Leenhouts PW (1968) A guide to the practice of herbarium taxonomy. International Bureau for Plant Taxonomy and Nomenclature of the International Association for Plant Taxonomy, Utrecht

    Google Scholar 

  • Mancuso S (2002) Discrimination of grapevine (Vitis vinifera L.) leaf shape by fractal spectrum. Vitis 41(3):137–142

    Google Scholar 

  • Martin CV, Little DP, Goldenberg R, Michelangeli FA (2008) A phylogenetic evaluation of Leandra (Miconieae, Melastomataceae): a polyphyletic genus where the seed tells the story, not the petals. Cladistics 24:315–317

    Article  Google Scholar 

  • McLachlan GJ (1992) Discriminant analysis and statistical pattern recognition. Wiley, New York

    Book  Google Scholar 

  • Mendonça RC, Felfili JM, Walter BMT, Silva-Junior M, Rezende AV, Filgueiras TS, Nogueira PE, Fagg CW (2008) Flora vascular do bioma cerrado: checklist com 12.356 espécies. In: Sano SM, Almeida SP, Ribeiro JF (eds) Cerrado: Ecologia e Flora, vol 2. Embrapa Cerrados, Brasília, Brazil, pp 421–1279

  • Michelangeli FA, Penneys DS, Giza J, Soltis D, Hils MH, Skean J (2004) A preliminary phylogeny of the tribe Miconieae (Melastomataceae) based on nrITS sequence data and its implications on inflorescence position. Taxon 53:279–290

    Article  Google Scholar 

  • Mitchell T (1997) Machine learning. McGraw–Hill, New York

    Google Scholar 

  • Mugnai S, Pandolfi C, Azzarello E, Masi E, Mancuso S (2008) Camellia japonica L. genotypes identified by an artificial neural network based on phyllometric and fractal parameters. Plant Syst Evol 270:95–108

    Article  Google Scholar 

  • Nam Y, Hwang E (2005) A shape-based retrieval scheme for leaf images. In: Ho YS, Kim H (eds) Advances in multimedia information processing. Lecture notes in computer science, vol 3767. Springer, Berlin, pp 876–887

  • Nam YY, Hwang EJ, Kim DY (2008) A similarity-based leaf image retrieval scheme: joining shape and venation features. Comput Vis Image Understand 110(2):245–259

    Article  Google Scholar 

  • Neto JC, Meyer GE, Jones DD, Samal AK (2006) Plant species identification using elliptic fourier leaf shape analysis. Comput Electron Agr 50:121–134

    Article  Google Scholar 

  • Pankhurst RJ (1978) Biological identification. University Park Press, Baltimore

    Google Scholar 

  • Pearce DW, Millard S, Bray DF, Rood SB (2006) Stomatal characteristics of riparian poplar species in a semi-arid environment. Tree Physiol 26:211–218

    Article  PubMed  Google Scholar 

  • Persson HA, Gustavsson BA (2001) The extent of clonality and genetic diversity in lingonberry (Vaccinium vitis-idaea L.) revealed by RAPDs and leaf-shape analysis. Mol Ecol 10:1385–1397

    Article  CAS  PubMed  Google Scholar 

  • Plotze RO, Falvo M, Pádua JG, Bernacci LC, Vieira MLC, Oliveira GCX, Bruno OM (2005) Leaf shape analysis by the multiscale minkowski fractal dimension, a new morphometric method: a study in Passiflora L. (Passifloraceae). Can J Bot 83(3):287–301

    Article  Google Scholar 

  • Ramos E, Fernández DS (2009) Classification of leaf epidermis microphotographs using texture features. Ecol Informat 4(3):177–181

    Article  Google Scholar 

  • Ramos VS, Durigan G, Franco ADC, Siqueira MF, Rodrigues RR (2008) Árvores da floresta estacional semidecidual: guia de identificaçào de espécies. Edusp, São Paulo

    Google Scholar 

  • Rossatto DR, Kolb RM (2009) An evergreen neotropical savanna tree (Gochnatia polymorpha, Asteraceae) produces different dry- and wet-season leaf types. Aust J Bot 57:439–443

    Article  Google Scholar 

  • Salatino A, Montenegro G, Salatino MLF (1986) Microscopia eletrônica de varredura de superfícies foliares de espécies lenhosas do cerrado. Rev Bras Bot 9:117–124

    Google Scholar 

  • Slaughter DC, Giles DK, Downey D (2008) Autonomous robotic weed control systems: a review. Comput Electron Agr 61:63–78

    Article  Google Scholar 

  • Souza MLDR, Baumgratz JFA (2009) Leandra Raddi (Melastomataceae). In: Wanderley MGL, Shepherd GJ, Melhem TS, Giulietti AM, Martins SE (eds) Flora Fanerogâmica do Estado de São Paulo, vol 6, Instituto de Botânica, FAPESP, São Paulo, pp 32–68

  • Wang XF, Du JX, Zhang GJ (2005) Recognition of leaf images based on shape features using a hypersphere classifier. In: Huang DS, Zhang XP, Huang GB (eds) Advances in intelligent computing. Lecture notes in computer science, vol 3644, pp 87–96

  • Wang X, Huang DS, Du JX, Xu H, Heutte L (2008) Classification of plant leaf images with complicated background. Appl Math Comput 205(2):916–926

    Article  Google Scholar 

  • Wang Z, Chi Z, Feng DD (2003) Shape based leaf image retrieval. IEE Proc Vis Image Signal Process 150(1):34–43

    Article  Google Scholar 

  • Zhenjiang M (2000) Zernike moment-based image shape analysis and its application. Pattern Recognit Lett 21(2):169–177

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Assis Ecological Station and Instituto Florestal for permission to collect the leaves of the studied species, and Dr Renato Goldenberg for helping with plant identification. Odemir M. Bruno gratefully acknowledges the financial support of CNPq (National Council for Scientific and Technological Development, Brazil) (Grant #306628/2007-4 and #484474/2007-3). Dalcimar Casanova acknowledges support from FAPESP (São Paulo Research Foundation, Brazil) (2008/57313-2) for his PhD grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Odemir Martinez Bruno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossatto, D.R., Casanova, D., Kolb, R.M. et al. Fractal analysis of leaf-texture properties as a tool for taxonomic and identification purposes: a case study with species from Neotropical Melastomataceae (Miconieae tribe). Plant Syst Evol 291, 103–116 (2011). https://doi.org/10.1007/s00606-010-0366-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-010-0366-2

Keywords

Navigation