Skip to main content
Log in

Microsatellite markers help to assess genetic diversity among Opuntia ficus indica cultivated genotypes and their relation with related species

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Opuntia spp. belong to the Cactaceae family and are native to Central America. The most economically important species is O. ficus indica, cultivated both for fruits and cladodes. The genus includes other important edible species (from diploid to octoploid) that occur worldwide as either wild or cultivated species in many arid or semiarid areas (e.g., the Mediterranean region). Several accessions are cultivated in different growing regions, but little is known about their ancestries and levels of genetic diversity. The aim of this study was to investigate the level of intraspecific genetic diversity among O. ficus indica cultivated varieties and some related species. Specifically, six highly polymorphic simple sequence repeats (SSR) and two expressed sequence tag (EST)-SSR loci were investigated in 62 wild and cultivated genotypes belonging to 16 Opuntia species. The clusters identified by the distance and model-based analyses clearly separated the wild opuntias from the cultivated ones. However, the O. ficus indica accessions did not cluster separately from other arborescent cactus pear species, such as O. amyclaea, O. megacantha, O. streptacantha, O. fusicaulis, and O. albicarpa, indicating that their current taxonomical classifications do not fit with their genetic variability. In general, the genotypes cultivated in Mexico showed high levels of diversity, whereas most of the spineless accessions collected in other countries had a very narrow genetic base. This study increases our knowledge of the variability among some of the most diffused Opuntia cultivated accessions. This study also points to the inconsistencies of previous taxonomical genotype assignments that were based solely on morphological characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson EF (2001) The cactus family. Timber, Portland

    Google Scholar 

  • Barkley NA, Roose ML, Krueger RR, Federici CT (2006) Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theor Appl Genet 112:1519–1531

    Article  CAS  PubMed  Google Scholar 

  • Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368:455–457

    Article  CAS  PubMed  Google Scholar 

  • Britton NL, Rose JN (1963) The Cactaceae, vol 1. Dover, New York

    Google Scholar 

  • Brutsch MO, Zimmermann HG (1993) The prickly pear (Opuntia ficus-indica) Cactaceae in South Africa: utilisation of the naturalised weed and of the cultivated plants. Econ Bot 47:154–156

    Google Scholar 

  • Bryant D, Moulton V (2004) Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. Mol Biol Evol 21:255–265

    Article  CAS  PubMed  Google Scholar 

  • Chávez-Moreno CK, Tecante EA, Casas EA (2009) The Opuntia (Cactaceae) and Dactylopius (Hemiptera:Dactylopiidae) in Mexico: a historical perspective of use, interaction and distribution. Biodivers Conserv 18:3337–3355

    Article  Google Scholar 

  • Dangl GS, Mendum ML, Prins BH, Walker MA, Meredith CP, Simon CJ (2001) Simple sequence repeat analysis of a clonally propagated species: a tool for managing a grape germplasm collection. Genome 44:432–438

    Article  CAS  Google Scholar 

  • Doyle JJ, Egan AN (2010) Dating the origins of polyploidy events. New Phytol 186:73–85

    Article  PubMed  Google Scholar 

  • Esselink D, Nybom H, Vosman B (2004) Assignment of allelic configuration in polyploids using the MAC-PR (microsatellite DNA allele counting–peak ratios) method. Theor Appl Genet 109:402–408

    Article  CAS  PubMed  Google Scholar 

  • Fedorov A (1969) Chromosome numbers of flowering plants. Komarov Botanical Institute, Leningrad

    Google Scholar 

  • Felker P, Rodriguez SC, Casoliba RM, Filippini R, Medina D, Zapata R (2005) Comparison of Opuntia ficus indica varieties of Mexican and Argentine origin for fruit yield and quality in Argentina. J Arid Environ 60:405–422

    Article  Google Scholar 

  • Felker P, Paterson A, Jenderek MM (2006) Forage potential of Opuntia clones maintained by the USDA National Plant Germplasm System (NPGS) collection. Crop Sci 46:2161–2168

    Article  Google Scholar 

  • Fernandez-Montes MR, Mondragon-Jacobo C, Luna-Vazquez J, Gutierrez-Acosta F, Saenz-Quintero LA, Zegbe-Dominguez JA, Mendez-Gallegos SDJ, Martinez-Gonzalez JC (2000) Principales cultivares mexicanos de nopal tunero. Publicación Técnica Núm. 1. INIFAP-CIRCE-Campo Experimental Norte de Guanajuato, Guanajuato, México

  • García-Zambrano EA, Zavala-García F, Gutiérrez-Diez A, Ojeda-Zacarías MC, Cerda-Hurtado I (2009) Estimation of the genetic diversity of Opuntia spp. using molecular markers AFLP. Phyton 78:117–120

    Google Scholar 

  • Gibson AC, Nobel PS (1986) The cactus primer. Harvard University Press, Cambridge

    Google Scholar 

  • Goldblatt P (1981) Index to plant chromosome numbers 1975–1978. Monogr Syst Bot Missouri Bot Gard 5:1–553

    Google Scholar 

  • Goldblatt P, Johnson DE (1990) Index to plant chromosome numbers 1986–1987. Monogr Syst Bot Missouri Bot Gard 30:1–243

    Google Scholar 

  • Goldblatt P, Johnson DE (2006) Index to plant chromosome numbers 2001–2003. Monogr Syst Bot Missouri Bot Gard 106:106–107

    Google Scholar 

  • Griffith MP (2004) The origins of an important cactus crop, Opuntia ficus-indica (Cactaceae): new molecular evidence. Am J Bot 91:1915–1921

    Article  Google Scholar 

  • Helsen P, Verdyck P, Tye A, Desender K, Van Houtte N, Van Dongen S (2007) Isolation and characterization of polymorphic microsatellite markers in Galapagos prickly pear (Opuntia) cactus species. Mol Ecol Notes 7:454–456

    Article  CAS  Google Scholar 

  • Helsen P, Verdyck P, Tye A, Van Dongen S (2009) Low levels of genetic differentiation between Opuntia echios varieties on Santa Cruz (Galápagos). Plant Syst Evol 279:1–10

    Article  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  CAS  PubMed  Google Scholar 

  • Kiesling R (1998) Origen, domesticación y distribución de Opuntia ficus-indica. J Prof Assoc Cactus Dev 3:50–59

    Google Scholar 

  • Labra M, Grassi F, Bardini M, Imazio S, Guiggi A, Citterio S, Banfi E, Sgorbati S (2003) Relationships in Opuntia Mill. genus (Cactaceae) detected by molecular marker. Plant Sci 165:1129–1136

    Article  CAS  Google Scholar 

  • Landergott U, Naciri Y, Schneller JJ, Holderegger R (2006) Allelic configuration and polysomic inheritance of highly variable microsatellites in tetraploid gynodioecious Thymus praecox agg. Theor Appl Genet 113:453–465

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Luna-Paez A, Valadez-Moctezuma E, Barrientos-Priego AF, Gallegos-Vázquez C (2007) Characterization of Opuntia spp. by means of seed with RAPD and ISSR markers and its possible use for differentiation. J Prof Assoc Cactus Dev 9:43–59

    Google Scholar 

  • Mondragón-Jacobo C (2001) Cactus pear breeding and domestication. Plant Breed Rev 20:135–166

    Google Scholar 

  • Mondragón-Jacobo C (2003) Caracterización molecular mediante RAPDs de una colección de nopal de (Opuntia spp. Cactaceae) del centro de México, como base del mejoramiento genético. Revista Chapingo 9:97–114

    Google Scholar 

  • Mondragón-Jacobo C, Bordelon BB (2002) Apomixis in crosses of mexican pear cactus, preliminary molecular identification. Rev Fitotec Mex 25:247–252

    Google Scholar 

  • Mondragón-Jacobo C, Pérez-González S (1996) Native cultivars of cactus pear in Mexico. In: Janick J (ed) Progress in new crops. ASHS Press, Arlington, pp 446–450

    Google Scholar 

  • Moore RJ (1977) Index to plant chromosome numbers 1967–1971. Regnum Veg 96:1–157

    Google Scholar 

  • Nieddu G, Chessa I (1997) Distribution of phenotypic characters within a seedling population from Opuntia ficus-indica (cv. “Gialla”). Acta Hort 438:37–43

    Google Scholar 

  • Nieddu G, Chessa I, Barberis A (2006) Characterization of seedlings obtained from open pollinated ‘Gialla’ cactus pear (Opuntia ficus-indica). Acta Hort 728:105–110

    Google Scholar 

  • Oetting WS, Lee HK, Flanders DJ, Wiesner GL et al (1995) Linkage analysis with multiplexed short tandem repeat polymorphisms using infrared fluorescence and M13 tailed primers. Genomics 30:450–458

    Article  CAS  PubMed  Google Scholar 

  • Pimienta-Barrios E (1994) Prickly pear (Opuntia spp.): a valuable fruit crop for the semi-arid lands of Mexico. J Arid Environ 28:1–12

    Article  Google Scholar 

  • Pinkava DJ, Rebman J, Baker M (1998) Chromosome numbers in some cacti of western North America—VII. Haseltonia 6:32–41

    Google Scholar 

  • Potgieter JP, Mashope BK (2009) Cactus pear (Opuntia spp.) germplasm conservation in South Africa. Acta Hort 811:47–54

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Rebman JP, Pinkava DJ (2001) Opuntia cacti of North America—an overview. Fla Entomol 84:474–483

    Article  Google Scholar 

  • Reyes-Agüero JA, Aguirre JR, Hernández HM (2005) Systematic notes and a detailed description of Opuntia ficus-indica (L.) Mill. (Cactaceae). Agrociencia 39:395–408

    Google Scholar 

  • Reyes-Agüero JA, Aguirre RJR, Valiente-Banuet A (2006) Reproductive biology of Opuntia: a review. J Arid Environ 64:549–585

    Article  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  • Scheinvar L (1995) Taxonomy of utilized opuntias. In: Barbera G, Inglese P, Pimienta-Barrios E (eds) Agroecology, cultivation and uses of cactus pear. FAO plant production and protection paper 132. FAO, Rome, pp 20–27

  • Segura S, Scheinvar L, Olalde G, Leblanc O, Filardo S, Muratalla A, Gallegos C, Flores C (2007) Genome sizes and ploidy levels in Mexican cactus pear species Opuntia (Tourn.) Mill. series Streptacanthae Britton et Rose, Leucotrichae DC., Heliabravoanae Scheinvar and Robustae Britton et Rose. Genet Resour Crop Evol 54:1033–1041

    Article  Google Scholar 

  • Souto Alves T, Vanusa Da Silva M, Alves De Almeida CM, Oliveira Jordão Do Amaral D, Cordeiro Dos Santos D, Farias I, Tenório Sabino Donato VM, Da Costa AF (2009) Genetic diversity in cactus clones using ISSR markers. Acta Hort 811:55–58

    Google Scholar 

  • Swofford DL (1998) PAUP*: phylogenetic analysis using parsimony (* and other methods), version 4. Sinauer, Sunderland

    Google Scholar 

  • Thurston MI, Field D (2005) Msatfinder: detection and characterisation of microsatellites. http://www.genomics.ceh.ac.uk/msatfinder/

  • Wallace RS, Gibson AC (2002) Evolution and systematics. In: Nobel PS (ed) Cacti: biology and uses. University of California Press, Berkeley, pp 1–22

    Google Scholar 

  • Wang X, Felker P, Paterson AH, Mizrahi Y, Nerd A, Mondragon-Jacobo C (1996) Cross hybridization and seed germination in Opuntia species. J Prof Assoc Cactus Dev 1:49–60

    Google Scholar 

  • Wang X, Felker P, Burrow MD, Paterson AH (1998) Comparison of RAPD marker patterns to morphological and physiological data in the classification of Opuntia accessions. J Prof Assoc Cactus Dev 3:3–14

    Google Scholar 

  • Zoghlami N, Chrita I, Bouamama B, Gargouri M, Zemni H, Ghorbel A, Mliki A (2007) Molecular based assessment of genetic diversity within Barbary fig (Opuntia ficus indica (L.) Mill.) in Tunisia. Sci Hort 113:134–141

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Candelario Mondragón-Jacobo (Instituto Nacional de Investigaciones Forestales y Agropecuarias, México) and Dr. Yaron Sitrit (The Hebrew University of Jerusalem, Israel) for providing some of the accessions used for microsatellite analysis. Funding was provided by Ente Sviluppo Agricolo, Regione Siciliana (Project Miglioramento genetico del ficodindia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano La Malfa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caruso, M., Currò, S., Las Casas, G. et al. Microsatellite markers help to assess genetic diversity among Opuntia ficus indica cultivated genotypes and their relation with related species. Plant Syst Evol 290, 85–97 (2010). https://doi.org/10.1007/s00606-010-0351-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-010-0351-9

Keywords

Navigation