Advertisement

Plant Systematics and Evolution

, Volume 289, Issue 3–4, pp 223–235 | Cite as

Evolution of Iris subgenus Xiphium based on chromosome numbers, FISH of nrDNA (5S, 45S) and trnLtrnF sequence analysis

  • Jorge Martínez
  • Pablo Vargas
  • Modesto Luceño
  • Ángeles Cuadrado
Original Article

Abstract

The subgenus Xiphium is one of the six infrageneric divisions of the genus Iris. Chromosome numbers of six of the seven Xiphium species are known. Here the aim was to infer genetic and phylogenetic relationships based on chromosome numbers, chromosome markers and plastid sequences. Chromosomal locations of 5S and 45S rDNA loci were determined in 19 populations of the 7 species by fluorescence in situ hybridization (FISH). Additionally, the trnLtrnF plastid spacer was sequenced and a phylogenetic analysis performed. Based on chromosome markers, subgenus Xiphium species were classified into four groups that differed in the number and locations of both types of nrDNA: (1) I. tingitana (2n = 28), I. filifolia (2n = 30, 34) and I. xiphium (2n = 34), (2) I. juncea (2n = 32) and I. boissieri (2n = 36), (3) I. serotina (2n = 34) and (4) I. latifolia (2n = 42). Although the trnLtrnF phylogeny was not fully resolved, the sequence analysis showed a well-supported subgroup of I. filifolia, I. tingitana and I. xiphium, as well as I. juncea. FISH physical maps of the Iris subgenus Xiphium taxa are species dependent. I. filifolia, I. tingitana and I. xiphium are very closely related species and share cytogenetic characteristics. Disploidy appears to have been central in the evolution of this subgenus, given a series of chromosome numbers (2n = 28, 30, 32, 34, 36, 42) and our phylogenetic results. Clear differences were found among European and African populations of I. filifolia. A different taxonomic treatment of I. filifolia is supported for populations on both sides of the Strait of Gibraltar.

Keywords

45S rDNA 5S rDNA cpDNA sequences Disploidy FISH Iridaceae Iris subgenus Xiphium Strait of Gibraltar 

Notes

Acknowledgments

The authors thank O. Fiz and B. Guzmán and V. Valcárcel for support in the field. We also greatly thank the Real Jardín Botánico de Madrid (MA) and Universidad de Alcalá de Henares (UAH) for the permit to use their installations. Special thanks also to Mr. Maurice Boussard for supplying the I. juncea material. The financial support of the project “El Estrecho de Gibraltar y la evolución de las angiospermas: análisis moleculares, citogenéticos y reproductores” (BES-2003-1538 REN2002-04354-C02-01) of the Spanish Ministerio de Educación y Ciencia is acknowledged. This paper is part of the PhD of Jorge Martínez.

References

  1. Adams SP, Leitch IJ, Bennett MD, Chase MW, Leitch AR (2000) Ribosomal DNA evolution and phylogeny in Aloe (Asphodelaceae). Am J Bot 87:1578–1583CrossRefPubMedGoogle Scholar
  2. Alvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29:417–434CrossRefPubMedGoogle Scholar
  3. Bennetzen JL, Kellogg EA (1997) Do plants have a one-way ticket to genomic obesity? Plant Cell 9:1509–1514CrossRefPubMedGoogle Scholar
  4. Castilho A, Heslop-Harrison JS (1995) Physical mapping of 5S and 18S–25S rDNA and repetitive DNA sequences in Aegilops umbellulata. Genome 38:91–96PubMedGoogle Scholar
  5. Christiansen H (1997) Subgenus Xiphium (Miller) Spach. In: The Species Group of the British Iris society (ed) A guide to species Irises, their identification and cultivation. Cambridge University Press, Cambridge, pp 220–224Google Scholar
  6. Colasante M, Jury SL, Linnegar S (2002) Genus Iris. In: Valdés B, Rejdali M, Achhal El Kadmiri A, Jury SL, Montserrat JM (eds) Checklist of vascular plants of N Morocco with identification keys. C.S.I.C, Madrid, pp 883–885Google Scholar
  7. Cuadrado A, Jouve N (1994) Mapping and organization of highly-repeated DNA sequences by means of simultaneous and sequential FISH and C-banding in 6x-Triticale. Chromosome Res 2:231–338CrossRefGoogle Scholar
  8. Cuadrado A, Jouve N (1997) Distribution of highly repeated DNA sequences in species of the genus Secale. Genome 40:309–317CrossRefPubMedGoogle Scholar
  9. Cuadrado A, Jouve N (1999) Evolutionary trends of different repetitive DNA sequences during speciation in genus Secale. J Hered 93:339–345CrossRefGoogle Scholar
  10. De Bustos A, Cuadrado A, Soler C, Jouve N (1996) Physical mapping of repetitive DNA sequences and 5S and 18S–26S rDNA in wild species of the genus Hordeum. Chromosome Res 4:491–499CrossRefPubMedGoogle Scholar
  11. de Melo NF, Guerra M (2003) Variability of the 5S and 45S rDNA sites in Passiflora L. species with distinct base chromosome numbers. Ann Bot 92:309–316CrossRefPubMedGoogle Scholar
  12. Dobigny G, Ducroz J-F, Robinson TJ, Volobouev V (2004) Cytogenetics and cladistics. Syst Biol 53:470–484CrossRefPubMedGoogle Scholar
  13. Fernandes A., Queirós M. (1970–1971) Sur la caryologie de quelques plantes récoltéess pendant la IIIème réunion de botanique péninsulare. Mem. Soc. Broter. 21Google Scholar
  14. Fernández A (1950) Sobre a cariologia de algumas plantas da Serra do Gerês. Agron Lusit 12:551–583Google Scholar
  15. Fernández Casas J, Pajarón S, Rodríguez Pascual ML (1978) Números cromosómicos para la flora española. Números 60–65. Lagascalia 8:105–125Google Scholar
  16. Fregonezi KN, Torezan JMD, Vanzela ALL (2004) A karyotypic study of three southern Brazilian Asteraceae species using fluorescence in situ hybridization with a 45S rDNA probe and C-CMA(3) banding. Genet Mol Biol 27:223–227CrossRefGoogle Scholar
  17. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885CrossRefPubMedGoogle Scholar
  18. Gerlach WL, Dyer TA (1980) Sequence organisation of the repeating units in the nucleus of wheat that contain 5SrRNA genes. Nucleic Acids Res 8:4851–4865CrossRefPubMedGoogle Scholar
  19. Goldblatt P, Takei M (1997) Chromosome cytology of Iridaceae—patterns of variation, determination of ancestral base numbers, and modes of karyotype change. Ann Mo Bot Gard 84:285–304CrossRefGoogle Scholar
  20. Hall KJ, Parker JS (1995) Stable chromosome fission associated with rDNA mobility. Chromosome Res 3:417–422CrossRefPubMedGoogle Scholar
  21. Heslop-Harrison JS (2000) Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes. Plant Cell 12:617–635CrossRefPubMedGoogle Scholar
  22. Heslop-Harrison JS, Schwarzacher T, Anamthawat-Jonsson K, Leith AR, Shi M, Leitch IJ (1991) In situ hybridization with automated chromosome denaturation. Tech 3:109–116Google Scholar
  23. Hidalgo O, Garcia-Jacas N, Garnatje T, Susanna A, Siljak-Yakovlev S (2007) Karyological evolution in Rhaponticum Vaill. (Asteraceae, Cardueae) and related genera. Bot J Linn Soc 153:193–201CrossRefGoogle Scholar
  24. Jiang J, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068CrossRefPubMedGoogle Scholar
  25. Kelchner SA (2000) The evolution of non-coding chloroplast DNA and its application in plant systematics. Ann Mo Bot Gard 87:482–498CrossRefGoogle Scholar
  26. Leith IJ, Heslop-Harrison JS (1993) Physical mapping of four sites of 5S rDNA sequences and one site of the alpha-amylase-2-gene in barley (Hordeum vulgare). Genome 36:517–523CrossRefGoogle Scholar
  27. Li L, Arumuganathan K (2001) Physical mapping of 45S and 5S rDNA on maize metaphase and sorted chromosomes by FISH. Hereditas 134:141–145CrossRefPubMedGoogle Scholar
  28. Linares C, Gonzalez JM, Ferrer E, Fominaya A (1996) The use of double fluorescence in situ hybridization to physically map the positions of 5S-rDNA loci in relation to the chromosomal location of 18S–5.8S–26S rDNA and a C genome specific DNA sequence in the genus Avena. Genome 39:535–542CrossRefPubMedGoogle Scholar
  29. Löve Á (1973) Cytotaxonomy of Spanish plants II. Monocotyledons. Lagascalia 3:147–182Google Scholar
  30. Makarevitch I, Golovnina K, Scherbik S, Blinov A (2003) Phylogenetic relationships of the Siberian Iris species inferred from noncoding chloroplast DNA sequences. Int J Plant Sci 164:229–237CrossRefGoogle Scholar
  31. Martel E, Poncet V, Lamy F, Siljak-Yakovlev S, Lejeune B, Sarr A (2004) Chromosome evolution of Pennisetum species (Poaceae): implications of ITS phylogeny. Plant Syst Evol 249:139–149CrossRefGoogle Scholar
  32. Martínez J, Vargas P, Carine M, Jury SL (2009) Iris rutherfordii Mart.Rodr., P.Vargas, Carine & Jury (Iridaceae, Iris subgen. Xiphium (Mill.) Spach), a new species from Morocco. Candollea 64:127–132Google Scholar
  33. Mathew B (1981) The Iris. Universe Books, New YorkGoogle Scholar
  34. Mishima M, Ohmido N, Fukui M, Yahara T (2002) Trends in site-number change of rDNA loci during polyploid evolution in Sanguisorba (Rosaceae). Chromosoma 110:550–558CrossRefPubMedGoogle Scholar
  35. Murata M, Heslop-Harrison JS, Motoyoshi IF (1997) Physical mapping of the 5S ribosomal RNA genes in Arabidopsis thaliana by multi-colour fluorescence in situ hybridization with cosmid clones. Plant J 12:31–37CrossRefPubMedGoogle Scholar
  36. Muravenko OV, Amosova AV, Samatadze TE, Semenova OY, Nosova IV, Popov KV, Shostak NG, Zoschuk SA, Zelenin AV (2004) Chromosome localization of 5S and 45S ribosomal DNA in the Genomes of Linum L. species of the section Linum (Syn. Protolinum and Adenolinum). Russ J Genet 40:193–196CrossRefGoogle Scholar
  37. Nieto Feliner G, Rosselló JA (2007) Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Mol Phylogenet Evol 44:911–919CrossRefPubMedGoogle Scholar
  38. Nylander J. A. A. (2004) MrModeltest version 2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University. http://www.abc.se/~nylander/. Accessed 21 May 2009
  39. Pérez E, Pastor J (1994) Contribución al estudio cariológico de la familia Iridaceae en Andalucía Occidental. Lagascalia 17:257–272Google Scholar
  40. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818CrossRefPubMedGoogle Scholar
  41. Ran Y, Hammett KRW, Murray BG (2001) Phylogenetic analysis and karyotype evolution in the genus Clivia (Amaryllidaceae). Ann Bot 87:823–830CrossRefGoogle Scholar
  42. Rodríguez-Sanchez F, Pérez-Barrales R, Ojeda F, Vargas P, Arroyo J (2008) The Strait of Gibraltar as melting pot for plant biodiversity. Quaternary Sci Rev 27:2100–2117CrossRefGoogle Scholar
  43. Rogers SO, Bendich AJ (1987) Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Plant Mol Biol 9:509–520CrossRefGoogle Scholar
  44. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  45. Ruas CD, Vanzela ALL, Santos MO, Fregonezi JN, Ruas PM, Matzenbacher NI, de Aguiar-Perecin MLR (2005) Chromosomal organization and phylogenetic relationships in Hypochaeris species (Asteraceae) from Brazil. Genet Mol Biol 28:129–139CrossRefGoogle Scholar
  46. Ruiz Rejon M (1976) Estudios cariológicos en especies españolas del orden Liliales. II. Familia Iridaceae. Cuad Cien Biol 5:141–144Google Scholar
  47. Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64:315–324Google Scholar
  48. Selvi F, Bigazzi M (2002) Chromosome studies in Turkish species of Nonea (Boraginaceae): the role of polyploidy and descending disploidy in the evolution of the genus. Edinb J Bot 59:405–420CrossRefGoogle Scholar
  49. Shaw J, Lickey EB, Shilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288CrossRefGoogle Scholar
  50. Simmons MP, Ochotorena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Bot 49:369–381Google Scholar
  51. Simonet M (1928a) Contribution a l′étude des chromosomes chez le genre Iris. Cr Soc Biol 99:1928–1931Google Scholar
  52. Simonet M (1928b) Le nombre des chromosomes dans le genre Iris. Cr Soc Biol 99:1314–1316Google Scholar
  53. Simonet M (1930) Nouvelles recherches sur le nombre des chromosomes chez les iris et sur l′existence de mitoses didiploides dans ce genre. Cr Hebd Soc Biol 103:1197–1200Google Scholar
  54. Simonet M (1932) Recherches cytologiques et génétiques chez les iris. B Biol Fr Belg 106:255–444Google Scholar
  55. Simonet M (1952) Nouveaux dénombrements chez les Iris. Cr Hebd Acad Sci 235:1244–1246Google Scholar
  56. Soltis DE, Soltis PS (1995) The dynamic nature of polyploid genomes. Proc Natl Acad Sci USA 92:8089–8091CrossRefPubMedGoogle Scholar
  57. Stace CA (2000) Cytology and cytogenetics as a fundamental taxonomic resource for the 20th and 21th centuries. Taxon 49:451–479CrossRefGoogle Scholar
  58. Stebbins G (1971) Chromosomal evolution in higher plants. Addison-Wesley, LondonGoogle Scholar
  59. Swofford D. (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland. http://paup.csit.fsu.edu/. Accessed 21 May 2009
  60. Taberlet P, Gielly L, Patou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109CrossRefPubMedGoogle Scholar
  61. Tagashira N, Kondo K (2001) Chromosome phylogeny of Zamia and Ceratozamia by means of Robertsonian changes detected by fluorescence in situ hybridization (FISH) technique of rDNA. Plant Syst Evol 227:145–155CrossRefGoogle Scholar
  62. Thomas HM, Harper JA, Meredith MR, Morgan WG, King IP (1997) Physical mapping of ribosomal DNA sites in Festuca arundinacea and related species by in situ hyhridization. Genome 40:406–410CrossRefPubMedGoogle Scholar
  63. Tillie N, Chase MW, Hall T (2000) Molecular studies in the genus Iris L.: a preliminary study. Ann.Bot -Rome 58 (n.s.2):105–112Google Scholar
  64. Torrell M, Cerbah M, Siljak-Yakovlev S, Valles J (2003) Molecular cytogenetics of the genus Artemisia (Asteraceae, Anthemideae): fluorochrome banding and fluorescence in situ hybridization. I. Subgenus Seriphidium and related taxa. Plant Syst Evol 239:141–153CrossRefGoogle Scholar
  65. Tremetsberger K, Talavera S, Stuessy T, Ortiz MA, Weiss-Schneeweiss H, Kadlec G (2004) Relationship of Hypochaeris salzmaniana (Asteraceae, Lactuceae), an endangered species of the Iberian Peninsula, to H. radicata and H. glabra and biogeographical implications. Bot J Linn Soc 146:79–95CrossRefGoogle Scholar
  66. Vanzela ALL, Cuadrado A, Vieira AOS, Jouve N (1999) Genome characterization and relationships between two species of the genus Lobelia (Campanulaceae) determined by repeated DNA sequences. Plant Syst Evol 214:211–218CrossRefGoogle Scholar
  67. Wilson CA (2004) Phylogeny of Iris based on chloroplast matK gene and trnK intron sequence data. Mol Phylogenet Evol 33:402–412CrossRefPubMedGoogle Scholar
  68. Zhang D, Sang T (1999) Physical mapping of ribosomal RNA genes in peonies (Paeonia, Paeoniaceae) by fluorescent in situ hybridization: implications for phylogeny and concerted evolution. Am J Bot 86:735–740CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Jorge Martínez
    • 1
  • Pablo Vargas
    • 1
  • Modesto Luceño
    • 2
  • Ángeles Cuadrado
    • 3
  1. 1.Real Jardín Botánico de MadridMadridSpain
  2. 2.Universidad Pablo de OlavideSevillaSpain
  3. 3.Departamento de Biología Celular y GenéticaUniversidad de AlcaláMadridSpain

Personalised recommendations