Skip to main content
Log in

Cytological differentiation between the two subgenomes of the tetraploid Emilia fosbergii Nicolson and its relationship with E. sonchifolia (L.) DC. (Asteraceae)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The diploid Emila sonchifolia (2n = 10) and the tetraploid E. fosbergii (2n = 20) species are widely distributed throughout tropical and subtropical America, and are the only two Emilia species occurring in Brazil. Emilia fosbergii displays two sets of ten chromosomes, one slightly larger than the other. The smaller chromosome set is similar to the chromosome complement of the diploid, which agrees with the suggested participation of E. sonchifolia in the formation of E. fosbergii. To elucidate this hypothesis, the relationship between the genomes of the two species was investigated using chromomycin A3 (CMA)/4’,6-diamidino-2-phenylindole (DAPI) double staining, distribution of 5S and 45S rDNA sites by fluorescence in situ hybridization (FISH) and whole genome comparison by genomic in situ hybridization (GISH). CMA/DAPI staining and FISH revealed the occurrence of one pair of CMA bands in E. sonchifolia and three pairs in E. fosbergii, all of them co-localized with 45S rDNA sites. Additionally, E. fosbergii displayed a fourth, small 45S rDNA site in its larger subgenome which was not detected as CMA band. Surprisingly, the euchromatin of the smaller subgenome of E. fosbergii stained less intensely with CMA than the larger one. The GISH procedure demonstrated the similarity between the genome of E. sonchifolia and the smaller chromosome set of E. fosbergii. GISH and CMA staining clearly demonstrate that E. fosbergii is an allotetraploid species and suggest E. sonchifolia as one of its ancestors. The maintenance of at least one pair of 5S and 45S rDNA sites per subgenome of E. fosbergii and the differentiation between its subgenomes by CMA staining seem to indicate that post-polyploidization changes are still incipient, probably because the polyploidization event and the origin of E. fosbergii were relatively recent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Almeida CCS, Carvalho PCL, Guerra M (2007) Karyotype differentiation among Spondias species and the putative hybrid Umbu-cajá (Anacardiaceae). Bot J Linn Soc 155:541–547

    Google Scholar 

  • Ansari HA, Ellison NW, Williams WM (2008) Molecular and cytogenetic evidence for an allotetraploid origin of Trifolium dubium (Leguminosae). Chromosoma 117:159–167

    Article  PubMed  Google Scholar 

  • Baldwin JT Jr (1946) Cytogeography of Emilia Cass. in the Americas. Bull Torrey Bot Club 73:18–23

    Article  Google Scholar 

  • Baldwin JT Jr, Speese BM (1949) Cytogeography of Emilia in West Africa. Bull Torrey Bot Club 76:346–351

    Article  Google Scholar 

  • Barros e Silva AE, Guerra M (2010) The meaning of DAPI bands observed after C-banding and FISH procedures. Biotech Histochem 85:115–125

    Article  CAS  PubMed  Google Scholar 

  • Belyayev A, Raskina O, Korol A, Nevo E (2000) Coevolution of A and B genomes in allotetraploid Triticum dicoccoides. Genome 43:1021–1026

    Article  CAS  PubMed  Google Scholar 

  • Bennett ST, Kenton AY, Bennett MD (1992) Genomic in situ hybridization reveals the allopolyploid nature on Milium montianum (Gramineae). Chromosoma 101:420–424

    Article  Google Scholar 

  • Brasileiro-Vidal AC, Cuadrado A, Brammer SP, Benko-Iseppon AM, Guerra M (2005) Molecular cytogenetic characterization of parental genomes in the partial amphidiploid Triticum aestivum × Thinopyrum ponticum. Genet Mol Biol 28:308–313

    Article  CAS  Google Scholar 

  • Coleman JR, Campello ML (1984) Cytogenetics of a mixed Brazilian population of Emilia sonchifolia (L.) DC and E. coccinea (Sims.) G. Don. (Compositae). Braz J Genet 1:83–94

    Google Scholar 

  • D’Hont A, Paget-Goy A, Escoute J, Carrel F (2000) The interspecific genome structure of cultivated banana, Musa spp. revealed by genomic DNA in situ hybridization. Theor Appl Genet 100:177–183

    Article  Google Scholar 

  • Doyle JJ, Doyle JV (1987) A rapid DNA isolation procedure for small amounts of leaf tissue. Phytochem Bull 19:810–815

    Google Scholar 

  • Guerra MS, Nogueira MT (1990) The cytotaxonomy of Emilia spp. (Asteraceae: Senecioneae) occurring in Brazil. Plant Syst Evol 170:229–236

    Article  Google Scholar 

  • Hall AE, Kettler GC, Preus D (2006) Dynamic evolution at pericentromeres. Genome Res 16:355–364

    Article  CAS  PubMed  Google Scholar 

  • Kato A, Vega JM, Han F, Lamb JC, Birchler JA (2005) Advances in plant chromosome identification and cytogenetic techniques. Curr Opin Plant Biol 8:148–154

    Article  CAS  PubMed  Google Scholar 

  • Lamb JC, Birchler JA (2006) Retroelement genome painting: cytological visualization of retroelement expansions in the genera Zea and Tripsacum. Genetics 173:1007–1021

    Article  CAS  PubMed  Google Scholar 

  • Lim KY, Souckova-Skalicka K, Sarasan V, Clarkson JJ, Chase MW, Kovarik A, Leitch AR (2006) A genetic appraisal of a new synthetic Nicotiana tabacum (Solanaceae) and the synthetic tobacco. Am J Bot 93:875–883

    Article  CAS  Google Scholar 

  • Markova M, Michu E, Vyskot B, Janousek B, Zluvova J (2007) An interspecific hybrid as a tool to study phylogenetic relationships in plants using the GISH technique. Chromosome Res 15:1051–1059

    Article  CAS  PubMed  Google Scholar 

  • Matoba H, Soejima A, Hoshi Y (2007) Identification of parental genomes and genomic organization in Aster microcephalus var. ovatus. J Plant Res 120:585–593

    Article  PubMed  Google Scholar 

  • Meister A, Barow M (2007) DNA base composition of plant genomes. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley-VCH Verlag, Weinheim, pp 177–216

    Chapter  Google Scholar 

  • Moraes AP, Lemos RR, Brasileiro-Vidal AC, Soares Filho WS, Guerra M (2007) Chromosomal markers distinguish hybrids and non-hybrid accessions of mandarin. Cytogenet Genome Res 119:275–281

    Article  CAS  PubMed  Google Scholar 

  • Nicolson DH (1975) Emilia fosbergii, a new species. Phytologia 32:33–34

    Google Scholar 

  • Nicolson DH (1980) Summary of cytological information on Emilia and the taxonomy of four Pacific taxa of Emilia (Asteraceae:Senecioneae). Syst Bot 5:391–407

    Article  Google Scholar 

  • Olorode O (1973a) Identification of the genomic complements of Emilia praetermissa (Senecioneae–Compositae). Am J Bot 60:55–60

    Article  Google Scholar 

  • Olorode O (1973b) Meiotic studies on diploid hybrids between Emilia sonchifolia and E. coccinea (Compositae). Cytologia 38:725–729

    Google Scholar 

  • Olorode O, Olorunfemi AE (1973) The hybrid origin of Emilia praetermissa (Senecioneae–Compositae). Ann Bot 37:185–191

    Google Scholar 

  • Parokonny AS, Kenton AY, Meredith L, Owens SJ, Bennett MD (1992) Genomic divergence of allopatric sibling species studied by molecular cytogenetics of their F1 hybrids. Plant J 2:695–704

    Google Scholar 

  • Pedrosa A, Sandal N, Stougaard J, Schweizer D, Bachmair A (2002) Chromosomal map of the model legume Lotus japonicus. Genetics 161:1661–1672

    CAS  PubMed  Google Scholar 

  • Pedrosa-Harand A, de Almeida CC, Mosiolek M, Blair MW, Schweizer D, Guerra M (2006) Extensive ribosomal DNA amplification during Andean common bean (Phaseolus vulgaris L.) evolution. Theor Appl Genet 112:924–933

    Article  CAS  PubMed  Google Scholar 

  • Pontes O, Neves N, Silva M, Lewis MS, Madlung A, Comai L, Viegas W, Pikaard CS (2004) Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proc Natl Acad Sci 101:18240–18245

    Article  CAS  PubMed  Google Scholar 

  • Vanzela AA, Cuadrado A, Jouve N, Luceño M, Guerra M (1998) Multiple locations of the rDNA sites in holocentric chromosomes of Rhynchospora (Cyperaceae). Chromosome Res 6:345–349

    Article  CAS  PubMed  Google Scholar 

  • Weiss H, Maluszynska J (2000) Chromosomal rearrangement in autotetraploid plants of Arabidopsis thaliana. Hereditas 133:255–261

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Brazilian agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq (no. 474589/03-0, 307916/03-0, 140273/04-2), and Fundação de Amparo à Ciência e Tecnologia, FACEPE (Edt. 0005-05-03/04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Guerra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moraes, A.P., Guerra, M. Cytological differentiation between the two subgenomes of the tetraploid Emilia fosbergii Nicolson and its relationship with E. sonchifolia (L.) DC. (Asteraceae). Plant Syst Evol 287, 113–118 (2010). https://doi.org/10.1007/s00606-010-0302-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-010-0302-5

Keywords

Navigation