Skip to main content
Log in

Pollen and ovule production in wind-pollinated species with special reference to Juncus

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The reproductive biology of wind-pollinated species in terms of pollen and ovule production is rarely studied compared with zoophilous species, despite available hypotheses on the effect of growth form and life-history traits on reproductive investment. Here, we use published data and new data for species of Juncus and Luzula (Juncaceae) to test the hypotheses that, in wind-pollinated species, woody perennials should exhibit larger pollen–ovule (P/O) ratios than herbaceous species and that species with separate sexes have larger P/O ratios than homoecious species. In total, we report pollen and ovule production for 291 wind-pollinated species, including 19 Juncus and 5 Luzula species. Compared with other wind-pollinated species, Juncus exhibits unusually low P/O ratios (log P/O = 2.06 ± 0.46) because of high ovule production. We argue that the high ovule and seed production in Juncus, associated with frequent self-fertilization, may be beneficial in habitats preferred by the genus. In general, we found higher P/O ratios in woody perennials (log P/O = 4.37 ± 1.18) or in species with separate sexes (log P/O = 4.28 ± 1.12) than in herbaceous (log P/O = 3.51 ± 0.77) or homoecious (log P/O = 3.52 ± 0.80) species, respectively. However, when we analyzed woody perennials separately, we found no significant difference in P/O ratios between homoecious and nonhomoecious species. We argue that woody perennials, independent of dicliny, may be preferentially outcrossed and therefore exhibit decreased variation in mating systems compared with herbs. Because the degree of outcrossing correlates with P/O ratios, differences between homoecious and nonhomoecious woody perennials could be less pronounced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ackerman JD (2000) Abiotic pollen and pollination: ecological, functional, and evolutionary perspectives. Plant Syst Evol 222:167–185

    Article  Google Scholar 

  • Agnihotri MS, Singh BP (1975) Pollen production and allergenic significance of some grasses around Lucknow. J Palyn 11:151–154

    Google Scholar 

  • Alsleben K, Burkart M, Wichmann M (2004) Germination, establishment and spreading of Juncus atratus—a species adapted to disturbances. Verh Ges Ökol 34:243

    Google Scholar 

  • Andrew R (1984) A practical pollen guide to the British flora. Quaternary Research Association, Cambridge

    Google Scholar 

  • Baker HG (1955) Self-compatibility and establishment after ‘long-distance’ dispersal. Evolution 9:347–348

    Article  Google Scholar 

  • Balslev H (1996) Flora Neotropica: Juncaceae. The New York Botanical Garden, New York

    Google Scholar 

  • Buchenau F (1890) Monographia Juncacearum. Bot Jahrb Syst 12:1–495

    Google Scholar 

  • Buchenau F (1892) Ueber die Bestäubungs-Verhältnisse bei den Juncaceen. Jahrb Wiss Bot 24:363–424

    Google Scholar 

  • Charlesworth D (1993) Why are unisexual flowers associated with wind pollination and unspecialized pollinators? Am Nat 141:481–490

    Article  Google Scholar 

  • Charlesworth D, Charlesworth B (1981) Allocation of resources to male and female functions in hermaphrodites. Biol J Linn Soc 15:57–74

    Article  Google Scholar 

  • Charnov EL (1979) Simultaneous hermaphroditism and sexual selection. Proc Natl Acad Sci USA 76:2480–2484

    Article  PubMed  CAS  Google Scholar 

  • Cruden RW (1977) Pollen–ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31:32–46

    Article  Google Scholar 

  • Cruden RW (2000) Pollen grains: why so many? Plant Syst Evol 222:143–165

    Article  Google Scholar 

  • Culley TM, Weller SG, Sakai AK (2002) The evolution of wind pollination in angiosperms. Trends Ecol Evol 17:361–369

    Article  Google Scholar 

  • Edgar E (1964) The leafless species of Juncus in New Zealand. New Zeal J Bot 2:177–204

    Google Scholar 

  • Faegri K, van der Pijl L (1979) The principles of pollination ecology. Pergamon, Oxford

    Google Scholar 

  • Friedman J, Barrett SCH (2008) A phylogenetic analysis of the evolution of wind pollination in the angiosperms. Int J Plant Sci 169:49–58

    Article  Google Scholar 

  • Götzenberger L, Durka W, Kühn I, Klotz S (2006) The relationship between the pollen–ovule ratio and seed size: a comparative test of a sex allocation hypothesis. Evol Ecol Res 8:1101–1116

    Google Scholar 

  • Götzenberger L, Durka W, Kühn I, Klotz S (2007) The relationship between the pollen–ovule ratio and pollen size: another comparative test of a sex allocation hypothesis. Evol Ecol Res 9:1145–1161

    Google Scholar 

  • Graebner P (1934) Juncaceae. In: Kirchner O, Loew E, Schröter C, Wangerin W (eds) Lebensgeschichte der Blütenpflanzen Mitteleuropas, Band I, Abteilung 3. Eugen Ulmer, Stuttgart, pp 80–221

    Google Scholar 

  • Harder LD (2000) Pollen dispersal and the floral diversity of monocotyledons. In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO, Melbourne, pp 243–257

    Google Scholar 

  • Harder LD, Johnson SD (2008) Function and evolution of aggregated pollen in angiosperms. Int J Plant Sci 169:59–78

    Article  Google Scholar 

  • Harder LD, Thomson JD (1989) Evolutionary options for maximizing pollen dispersal of animal-pollinated plants. Am Nat 133:323–344

    Article  Google Scholar 

  • Harder LD, Richards SA, Routley MB (2008) Effects of reproductive compensation, gamete discounting and reproductive assurance on mating-system diversity in hermaphrodites. Evolution 62:157–172

    Article  PubMed  Google Scholar 

  • Honig MA, Linder HP, Bond WJ (1992) Efficacy of wind pollination—pollen load size and natural microgametophyte populations in wind-pollinated Staberoha banksii (Restionaceae). Am J Bot 79:443–448

    Article  Google Scholar 

  • Jensen K (2004) Dormancy patterns, germination ecology, and seed-bank types of twenty temperate fen grassland species. Wetlands 24:152–166

    Article  Google Scholar 

  • Keighery GJ (1985) Breeding systems of the Wetsern Australian flora IV. Juncus and Luzula (Juncaceae). Bot Jahrb Syst 105:279–283

    Google Scholar 

  • Kirschner J, Balslev H, Clemants SE, Ertter B, Alvarez MCFC, Hämet-Ahti L, Miyamoto F, Noltie HJ, Novara LJ, Novikov VS, Simonov SS, Snogerup S, Wilson KL (2002) Juncaceae 2: Juncus subg. Juncus, Species Plantarum: flora of the World Part 7. Australian Biological Resource Study, Canberra

  • Larson BMH, Barrett SCH (2000) A comparative analysis of pollen limitation in flowering plants. Biol J Linn Soc 69:503–520

    Article  Google Scholar 

  • Linder HP (1998) Morphology and the evolution of wind pollination. In: Owens SJ, Rudall PJ (eds) Reproductive Biology in systematics, conservation and economic botany. Royal Botanic Garden, Kew, pp 123–135

    Google Scholar 

  • Lloyd DG (1984) Gender allocations in outcrossing cosexual plants. In: Dirzo R, Sarukhan J (eds) Perspectives on plant population ecology. Sinauer, Sunderland, pp 277–300

    Google Scholar 

  • Mazer SJ (1989) Ecological, taxonomic, and life history correlates of seed mass among Indiana Dune angiosperms. Ecol Monogr 59:153–175

    Article  Google Scholar 

  • Michalski SG, Durka W (2007a) High selfing and high inbreeding depression in peripheral populations of Juncus atratus. Mol Ecol 16:4715–4727

    Article  PubMed  Google Scholar 

  • Michalski SG, Durka W (2007b) Synchronous pulsed flowering: analysis of the flowering phenology in Juncus (Juncaceae). Ann Bot 100:1271–1285

    Article  PubMed  Google Scholar 

  • Michalski SG, Durka W (2009) Pollination mode and life form strongly affect the relation between mating system and pollen to ovule ratios. New Phytol 183:470–479

    Article  Google Scholar 

  • Mogensen HL (1975) Ovule abortion in Quercus (Fagaceae). Am J Bot 62:160–165

    Article  Google Scholar 

  • Moore HI, Burr S (1948) The control of rushes on newly reseeded land in Yorkshire. Grass Forage Sci 3:283–290

    Article  Google Scholar 

  • Niklas KJ (1985) The aerodynamics of wind pollination. Bot Rev 51:328–386

    Article  Google Scholar 

  • Pohl F (1929) Beziehungen zwischen Pollenbeschaffenheit, Bestäubungsart und Fruchtknotenbau. Beih Bot Central 46:247–285

    Google Scholar 

  • Pohl F (1937) Die Pollenerzeugung der Windblütler. Beih Bot Central 56:365–470

    Google Scholar 

  • Porcher E, Lande R (2005) Reproductive compensation in the evolution of plant mating systems. New Phytol 166:673–684

    Article  PubMed  Google Scholar 

  • Prieto-Baena JC, Hidalgo PJ, Dominguez E, Galan C (2003) Pollen production in the Poaceae family. Grana 42:153–160

    Article  Google Scholar 

  • Proctor M, Yeo P, Lack A (1996) The natural history of pollination. Timber, Portland

    Google Scholar 

  • Regal PJ (1982) Pollination by wind and animals: ecology of geographic patterns. Annu Rev Ecol Syst 13:497–524

    Article  Google Scholar 

  • Richards PW, Clapham AR (1941) Biological flora of the British Isles—Juncus L. J Ecol 29:362–368

    Article  Google Scholar 

  • Rodriguez AFM, Palacios IS, Molina RT (2007) Cyperaceae and Juncaceae pollination measured in the air at two sites in SW Spain. Aerobiologia 23:259–270

    Article  Google Scholar 

  • Roulston TH, Cane JH, Buchmann SL (2000) What governs protein content of pollen: pollinator preferences, pollen–pistil interactions, or phylogeny? Ecol Monogr 70:617–643

    Google Scholar 

  • Salisbury EJ (1974) The reproduction of Juncus tenuis (Juncus macer) and its dispersal. Trans Bot Soc Edinburgh 42:187–190

    Google Scholar 

  • Scofield DG, Schultz ST (2006) Mitosis, stature and evolution of plant mating systems: low-Phi and high-Phi plants. Proc R Soc Lond B 273:275–282

    Article  Google Scholar 

  • Stebbins GL (1970) Adaptive radiation of reproductive characteristics in angiosperms, I: pollination mechanisms. Annu Rev Ecol Syst 1:307–326

    Article  Google Scholar 

  • Subba Reddi C, Reddi NS (1986) Pollen production in some anemophilous angiosperms. Grana 25:55–61

    Article  Google Scholar 

  • Thompson K, Bakker J, Bekker R (1997) The soil seed banks of North West Europe: methodology, density and longevity. Cambridge University Press, Cambridge

    Google Scholar 

  • Tomlinson PB, Primack RB, Bunt JS (1979) Preliminary observations on floral biology in mangrove Rhizophoraceae. Biotropica 11:256–277

    Article  Google Scholar 

  • Welch D (1966) Juncus squarrosus L. J Ecol 54:535

  • Westoby M, Leishman M, Lord J (1996) Comparative ecology of seed size and dispersal. Philos Trans R Soc B 351:1309–1317

    Article  Google Scholar 

  • Whitehead DR (1969) Wind pollination in angiosperms: evolutionary and environmental considerations. Evolution 23:28–35

    Article  Google Scholar 

  • Whitehead DR (1983) Wind pollination: some ecological and evolutionary perspectives. In: Real L (ed) Pollination biology. Academic, Orlando, pp 97–108

    Google Scholar 

  • Wodehouse RP (1935) Pollen grains. McGraw Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan G. Michalski.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 61 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michalski, S.G., Durka, W. Pollen and ovule production in wind-pollinated species with special reference to Juncus . Plant Syst Evol 286, 191–197 (2010). https://doi.org/10.1007/s00606-010-0299-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-010-0299-9

Keywords

Navigation