Skip to main content

Advertisement

Log in

Spatial arrangement and genetic structure in Gentianella aspera in a regional, local, and temporal context

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Gentianella aspera is a biennial plant of various nutrient-poor grasslands that has become rare in the landscapes outside the Alps of eastern Austria. Using AFLP fingerprinting we investigated: (1) effects of spatial structure on genetic structure in a large vineyard population that is confined to the embankments separating the grapevines; (2) temporal variation in genetic diversity and structure in this population; (3) relationships with other populations in a regional context. On the regional scale, moderate isolation by distance among populations was revealed by a Mantel test. Bayesian analysis of population structure indicated three spatially distinct gene pools and an additional one within the vineyard population. Within this population, spatial autocorrelation analysis revealed a positive correlation between genetic and spatial distance up to 50 m. Patterns found by PCoA were not in line with a priori defined subpopulations and indicated substantial gene flow across embankments. AMOVA revealed low differentiation among both the subpopulations that were found on the linear embankments and among two local groups of these subpopulations. We found, however, striking differences in the among-group variation between the 2 years, i.e., between two local groups within the generations and between those groups among generations. This was due to the highly variable larger group of the younger generation, in which an additional gene pool was identified by Bayesian analysis of population structure. Based on these results we discuss scenarios of local and regional dynamics within and among G. aspera populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Bernhardt KG, Kriechbaum M (2006) Nachhaltiger Naturschutz in der Kulturlandschaft. Kritische Forschung und neue Wege am Beispiel von Zielarten für Halbtrockenrasen am Südwestrand des Tullnerfelds, NÖ. BokuInside 2:13–28

    Google Scholar 

  • Bernhardt KG, Handke K, Koch M, Laubhann D, Berg HM, Duda M, Höttinger H, Klepsch R, Pintar M, Schedl H (2005) Anwendungsmöglichkeit eines Zielartenkonzepts in einem niederösterreichischen Weinbaugebiet. Pflege und Erhalt von Weinbergböschungen. Naturschutz Landschaftsplan 37(7):202–211

    Google Scholar 

  • Chung MY, Nason JD, Epperson BK, Chung MG (2003) Temporal aspects of the fine-scale genetic structure in a population of Cinnamomum insularimontanum (Lauraceae). Heredity 90:98–106

    Article  CAS  PubMed  Google Scholar 

  • Corander J, Marttinen P (2006) Bayesian identification of admixture events using multi-locus molecular markers. Molec Ecol 15:2833–2843

    Article  Google Scholar 

  • Corander J, Marttinen P, Mäntyniemi S (2005) BAPS: Bayesian analysis of population structure. Manual 3:2

    Google Scholar 

  • Dannemann A (2000) Der Einfluß von Fragmentierung und Populationsgröße auf die genetische Variation und Fitness von seltenen Pflanzenarten am Beispiel von Biscutella laevigata (Brassicaceae). Diss Bot 330:1–151

    Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull 19:11–15

    Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinf Online 1:47–50

    CAS  Google Scholar 

  • Fischer M, Matthies D (1997a) Mating structure, inbreeding and outbreeding depression in the rare plant Gentianella germanica. Am J Bot 84:1685–1692

    Article  Google Scholar 

  • Fischer M, Matthies D (1997b) RAPD variation in relation to population size and plant fitness in the rare plant Gentianella germanica (Gentianaceae). Am J Bot 85:811–819

    Article  Google Scholar 

  • Fischer M, Matthies D (1998a) Experimental demography of the rare Gentianella germanica: seed bank formation and microsite effects on seedling establishment. Ecography 21:269–278

    Article  Google Scholar 

  • Fischer M, Matthies D (1998b) Effects of population size in the rare plant Gentianella germanica. J Ecol 86:195–204

    Article  Google Scholar 

  • Fischer M, Stöcklin J (1997) Local extinctions of plants in remnants of extensively used calcareous grasslands 1950–1985. Conserv Biol 11:727–737

    Article  Google Scholar 

  • Freckleton RP, Watkinson AR (2002) Large-scale spatial dynamics of plants: metapopulations, regional ensembles and patchy populations. J Ecol 90:419–434

    Article  Google Scholar 

  • Freckleton RP, Watkinson AR (2003) Are all plant populations metapopulations? J Ecol 91:321–324

    Article  Google Scholar 

  • Gaudeul M, Till-Bottraud I (2008) Genetic structure of the endangered perennial plant Eryngium alpinum (Apiaceae) in an alpine valley. Biol J Linn Soc 93:667–677

    Article  Google Scholar 

  • Gilpin ME, Soule ME (1986) Minimum viable populations: processes of species extinction. In: Soule ME (ed) Conservation biology. The science of scarcity and diversity. Sinauer Associates, Sunderland, pp 19–34

    Google Scholar 

  • Greimler J, Dobeš C (2000) High genetic diversity and differentiation in relict lowland populations of Gentianella austriaca (A. and J. Kern.) Holub (Gentianaceae). Plant Biol 2:628–637

    Article  Google Scholar 

  • Greimler J, Jang CG (2007) Gentianella stiriaca, a case of reticulate evolution in the northeastern and eastern Central Alps. Taxon 56:857–870

    Article  Google Scholar 

  • Haeupler H, Schönfelder P (1988) Atlas der Farn- und Blütenpflanzen der Bundesrepublik Deutschland. E. Ulmer, Stuttgart

    Google Scholar 

  • Halacsy E (1896) Flora von Niederösterreich. Zum Gebrauche auf Excursionen und zum Selbstunterricht bearbeitet. Tempsky u.Freytag, Wien

    Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, Oxford

    Google Scholar 

  • Hanski I, Gaggiotti OE (2004) Metapopulation biology: past, present, and future. In: Hanski I, Gaggiotti OE (eds) Ecology, genetics, and evolution of metapopulations. Elsevier Academic, Amsterdam, pp 3–21

    Chapter  Google Scholar 

  • Holderegger R, Wagner HH (2008) Landscape genetics. BioScience 58(3):199–207

    Article  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Molec Biol Evol 23:254–267

    Article  CAS  PubMed  Google Scholar 

  • Jang CG, Müllner AN, Greimler J (2005) Conflicting patterns of genetic and morphological variation in European Gentianella section Gentianella. Bot J Linn Soc 148:175–187

    Article  Google Scholar 

  • Kelly BA, Hardy OJ, Bouvet JM (2004) Temporal and spatial genetic structure in Vitellaria paradoxa (shea tree) in an agroforestry system in southern Mali. Molec Ecol 13:1231–1240

    Article  CAS  Google Scholar 

  • Kiviniemi K (2008) Effects of fragment size and isolation on the occurrence of four short-lived plants in semi-natural grasslands. Acta Oecol 33:56–65

    Article  Google Scholar 

  • Korneck D, Schnittler M, Vollmer I (1996) Rote Liste der Farn- und Blütenpflanzen (Pteridophyta et Spermatophyta) Deutschlands. Schriftenreihe Vegetationsk 28:21–187

    Google Scholar 

  • Laubhann D (2009) Zielarten im Naturschutz–Anwendbarkeit lokaler Zielarten. PhD Thesis, Universität für Bodenkultur, Wien

  • Lennartsson T (2000) Management and population viability of the pasture plant Gentianella campestris: the role of interactions between habitat factors. Ecol Bull 48:111–121

    Google Scholar 

  • Lennartsson T, Oostermeijer JGB (2001) Demographic variation and population viability in Gentianella campestris: effects of grassland management and environmental stochasticity. J Ecol 89:451–463

    Article  Google Scholar 

  • Luijten SH, Oostermeijer JGB, Ellis-Adam AC, den Nijs HCM (1999) Variable herkogamy and autofertility in marginal populations of Gentianella germanica in the Netherlands. Folia Geobot 34:483–496

    Article  Google Scholar 

  • Matthies D, Bräuer I, Maibom W, Tscharntke T (2004) Population size and the risk of local extinction: empirical evidence from rare plants. Oikos 105:481–488

    Article  Google Scholar 

  • Niklfeld H, Schratt-Ehrendorfer L (1999) Rote Liste gefährdeter Farn- und Blütenpflanzen. In: Niklfeld H (ed) Rote Listen gefährdeter Pflanzen Österreichs. 2. Auflage. Grüne Reihe des Bundesministeriums für Umwelt, Jugend und Familie, vol 10. Austria Medienservice, Graz, pp 33–152

    Google Scholar 

  • Ouborg NJ, Eriksson O (2004) Toward a metapopulation concept for plants. In: Hanski I, Gaggiotti OE (eds) Ecology, genetics, and evolution of metapopulations. Elsevier Academic, Amsterdam, pp 447–469

    Chapter  Google Scholar 

  • Ouborg NJ, Piquot Y, van Groenendael JM (1999) Population genetics, molecular markers, and the study of dispersal in plants. J Ecol 87:551–569

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molec Ecol Notes 6:288–295

    Article  Google Scholar 

  • Poschlod P, Dannemann A, Jackel AK, Bonn S (1999) Fragmentierung und Isolation von Pflanzenpopulationen–Einführung und Konzepte. In: Amler K, Bahl A, Henle K, Kaule G, Poschlod P, Settele J (eds) Populationsbiologie in der Naturschutzpraxis—Isolation, Flächenbedarf und Biotopansprüche von Pflanzen und Tieren. E. Ulmer, Stuttgart, pp 67–70

    Google Scholar 

  • Richards C (2000) Genetic and demographic influences on population persistence: gene flow and genetic rescue in Silene alba. In: Young AG, Clarke GM (eds) Genetics, demography and viability of fragmented populations. Cambridge University Press, Cambridge, pp 271–291

    Chapter  Google Scholar 

  • Schönswetter P, Tribsch A, Niklfeld H (2004) Amplified fragment length polymorphism (AFLP) suggests old and recent immigration into the Alps by the arctic-alpine annual Comastoma tenellum. J Biogeogr 31:1673–1681

    Article  Google Scholar 

  • Silvertown J, Charlesworth D (2001) Introduction to plant population biology, 4th ed. Blackwell Science, Oxford

    Google Scholar 

  • Stadler K (2006) Genetic structure among and within Gentianella aspera populations. Diplomarbeit, Universität Wien

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Fritjers A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414

    Article  CAS  PubMed  Google Scholar 

  • Wettstein R (1896) Die Europäischen Arten der Gattung Gentiana aus der Section Endotricha Froel. und ihr entwicklungsgeschichtlicher Zusammenhang. Kaiserlich-Königliche Hof- und Staatsdruckerei, C. Gerold’s Sohn, Wien

    Google Scholar 

  • Yang S, Bishop JG, Webster MS (2008) Colonization genetics of an animal-dispersed plant (Vaccinium membranaceum) at Mount St Helens, Washington. Molec Ecol 17:731–740

    CAS  Google Scholar 

Download references

Acknowledgments

Among the people we have to thank are Monika Kriechbaum, Wolfgang Holzner, and all those at the University of Life Sciences, Vienna, for providing helpful information on the study site in Mautern. We also thank Werner Lidl and Daniel Laubhann for their information on the populations. This study was supported by grants of the Kommission für Interdisziplinäre Ökologische Studien (KIÖS) of the Austrian Academy of Sciences and by the University of Natural Resources and Applied Life Sciences, Boku (Forschungsstimulierung II). Anton Russell, University Vienna, helped improve the English of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Greimler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stadler, K., Koch, M., Bernhardt, KG. et al. Spatial arrangement and genetic structure in Gentianella aspera in a regional, local, and temporal context. Plant Syst Evol 286, 7–19 (2010). https://doi.org/10.1007/s00606-010-0274-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-010-0274-5

Keywords

Profiles

  1. Marcus Koch