Skip to main content

Advertisement

Log in

A cyto-evolutional study of Campanumoea Blume (Campanulaceae) and a possible pathway for secondary karyotype formation

  • Short Communication
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Campanumoea is a small genus in the family Campanulaceae, with species divided into sections Campanumoea and Cyclocodon. Sixteen accessions from Campanumoea and related genera native to China were used to study their karyotype. The results showed that chromosome characteristics were different between the two sections. For Campanumoea, the karyotypic formula was 2n = 2X = 2m + 12sm + 2st = 16,3A and for Cyclocodon it was 2n = 2X = 6m + 12sm = 18,3B. These data, combined with chromosomal length characteristics, support the restoration of section Cyclocodon as a genus. However, the incorporation of section Campanumoea into Codonopsis requires more evidence. Comparison of chromosomal length and haploid set length revealed that chromosomal segment rearrangements occurred within sections of Campanumoea and between genera, with the difference within sections being greater than that between genera. Therefore, chromosomal segment rearrangements are present in Campanulaceae, implying that chromosomal segment rearrangement plays an important role in the evolution of diversity in Campanulaceae. By comparing the chromosomal characteristic in section Campanumoea and the genus Adenophora, we concluded that the secondary chromosome type such as n = 17, 18 would be derived by autopolyploidization of n = 9, and by chromosome fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Bennett MD, Leitch IJ (2003) Plant DNA C-values database (release 2.0). http://www.rbgkew.org.uk/cval/homepage.html. Accessed 20 October 2003

  • Bennetzen JL, Ma J (2003) The genetic colinearity of rice and other cereals based on genomic sequence analysis. Curr Opin Plant Biol 6:128–133

    Article  CAS  PubMed  Google Scholar 

  • Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell 16:1667–1678

    Article  CAS  PubMed  Google Scholar 

  • Blanc G, Hokamp K, Wolfe KH (2003) A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res 13:137–144

    Article  CAS  PubMed  Google Scholar 

  • Böcher T (1964) Chromosome connections and aberrations in the Campanula persicifolia group. Svensk Bot Tidskr 58:1–18

    Google Scholar 

  • Clark CB (1881) Campanulaceae. In: Hooker JD (ed) Fl Brit Ind, vol 3. L Reeve Co., London, pp 348–356

  • Contandriopoulos J (1984) Differentiation and evolution of the genus Campanula in the Mediterranean Region. In: Plant biosystematics. Academic, Canada, pp 141–158

  • Cosner ME, Raubeson LA et al (2004) Chloroplast DNA rearrangements in Campanulaceae: phylogenetic utility of highly rearranged genomes. BMC Evol Biol 4(27):1471–2148

    Google Scholar 

  • Cremonini R, Colonna N, Stefani A, Galasso I, Pignone D (1994) Nuclear DNA content. Chromatin organization and chromosome banding in brown and yellow seeds of Dasypyrum villosum (L.) P. Candargy. Heredity 72:365–373

    Article  CAS  Google Scholar 

  • Damboldt J (1976) Materials for a flora of Turkey 32: Campanulaceae. Notes Roy Bot Gard Edinburgh 35:39–52

    Google Scholar 

  • De Candolle A (1830) Monographie des Campanulêes. Paris

  • Devos KM, Wang ZM, Beales J, Sasaki T, Gale MD (1998) Comparative genetic maps of foxtail millet (Setaria italica) and rice (Oryza sativa). Theor Appl Genet 96:63–68

    Article  CAS  Google Scholar 

  • Dunbar A, Wallentinus H-G (1976) On pollen of Campanulaceae III. A numerical taxonomic investigation. Bot Not 129:69–72

    Google Scholar 

  • Eddie WMM (1997) A global reassessment of the generic relationships in the bellflower Family (Campanulaceae). Ph.D. thesis, University of Edinburgh, Scotland

  • Eddie WMM, Ingrouille MJ (1999) Polymorphism in the Aegean—five-loculed—species of the genus Campanula, sect. Quinqueloculares (Campanulaceae). Nordic J Bot 19:153–169

    Article  Google Scholar 

  • Eddie WMM, Shulkina T, Gaskin J, Haberle RC, Jansen RK (2003) Phylogeny of Campanulaceae s. str. Inferred from ITS sequences of nuclear ribosomal DNA. Ann Missouri Bot Gard 90:554–575

    Article  Google Scholar 

  • Fedorov AA (1972) Campanulaceae. In: Flora of the U.S.S.R. Shishkin BK (ed) Akademia Nauk SSSR, Moskva-Lenin grad, pp 92–324

  • Feld H, Zapp J, Becker H (2003) Secondary metabolites from the liverwort Tylimanthus renifolius. Phytochemistry 64:1335–1340

    Article  CAS  PubMed  Google Scholar 

  • Fivawo NC, Rees H (1985) Chromosome size variation during pollen grain development in Scilla sibirica. Theor Appl Genet 70(4):417–421

    Google Scholar 

  • Frediani M, Colonna N, Cremonini R, De Pace C, Delre V, Caccia R, Cionini PG (1994) Redundancy modulation of nuclear DNA sequences in Dasypyrum villosum. Theor Appl Genet 88:167–174

    Article  CAS  Google Scholar 

  • Gadella TWJ (1964) Cytotaxonomic studies in the genus Campanula. Wentia 11:1–104.8

    Google Scholar 

  • Greilhuber J (1986) Severely distorted Feulgen DNA amounts in Pinus (Coniferophytina) after nonadditive fixations as a result of meristematic self-tanning with vacuole contents. Can J Gen Cytol 28:409–415

    CAS  Google Scholar 

  • Greilhuber J (1988) ‘Self-tanning’—a new and important source of stoichiometric error in cytophotometric determination of nuclear DNA content in plants. Plant Syst Evol 158:87–96

    Article  CAS  Google Scholar 

  • Greilhuber J (2005) Intraspecific variation in genome size in Angiosperms: identifying its existence. Ann Bot 95:91–98

    Article  CAS  PubMed  Google Scholar 

  • Greuter W, Barrie FR, Burdet HM et al (1994) International code of botanical nomenclature (Tokyo code) adopted by the Fifteen International Botanical Congress, Yokohama, August–September 1993. Regnum Veg., vol 131, pp 1–389

  • Grey-Wilson C (1990) A survey of Codonopsis in cultivation. Plantsman 12:65–99

    Google Scholar 

  • Hall IM, Shankaranarayana GD, Noma K, Ayoub N, Cohen A et al (2002) Establishment and maintenance of a heterochromatin domain. Science 297:2232–2237

    Article  CAS  PubMed  Google Scholar 

  • Hong D-Y (1995) The geography of the Campanulaceae: on the distribution centres. Acta Phytotax Sin 33(6):521–536

    Google Scholar 

  • Hong D-Y, Lian YS (1983) Flora of China. Edited by: Editorial Board of the Flora of China, vol 73(2). Science Publishing Company, Beijing, pp 69–74

  • Hong D-Y, Ma L-M (1991) Systematics of the genus Cyananthus Wall ex Royle. Acta Phytotax Sin 29:25–51

    Google Scholar 

  • Innocenti AM, Bitonti MB (1983) Different duration of the mitotic cycle in seedlings from brown and black caryopses of Haynaldia villosa Schur. Caryologia 36:27–32

    Google Scholar 

  • Kellogg EA, Bennetzen JL (2004) The evolution of nuclear genome structure in seed plants. Am J Bot 91:1709–1725

    Article  CAS  Google Scholar 

  • Kliebenstein DJ (2008) A role for gene duplication and natural variation of gene expression in the evolution of metabolism. PLoS ONE 1 3(3):e1838. http://www.plosone.org

  • Kolakovsky AA (1987) System of the Campanulaceae family from the old world. Bot Zhurnal 72:1572–1579

    Google Scholar 

  • Kovanda M (1978) Campanulaceae. In: Heywood VH (ed) Flowering plants of the world. Mayflower Books, New York, pp 254–256

    Google Scholar 

  • Kumar V, Chauhan KPS (1975) Cytology of Cyananthus linifolius Wall. Cat. Proc. Indian Sci. Congr. Assoc. 62, Group B, vol 130

  • Lammers TG (1992) Systematics and biogeography of the Campanulaceae of Taiwan. In: Peng C-I (ed) Phytogeography and botanical inventory of Taiwan. Inst. Bot. Acad. Sin. Monogr. Ser. No. 12, Taipei, pp 41–61

  • Lammers TG (2007) World Checklist and Bibliography of the Campanulaceae. Richmond. Royal Botanic Gardens, Kew, Surrey

    Google Scholar 

  • Lei Z, Ding K-Y, Xu L et al (2007) A cytological study on Homocodon brevipes (Campanulaceae), a species endemic to China. Acta Bot Yunnan 29(3):323–326

    Google Scholar 

  • Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220

    Article  Google Scholar 

  • Li GT, Li M (2005) The nucleus type analysis of the chromosome of Codonopsis lanceolata. Forest By-Product Speciality China 01:58–61

    Google Scholar 

  • Moeliono B, Tuyn P (1960) Campanulaceae. In: van Steenis CGGJ (ed) Flora Malesiana Ser., vol 6(1). Noordhoff-Kolff, Djakarta, pp 107–141

    Google Scholar 

  • Morris KE, Lammers TG (1997) Circumscription of Codonopsis and the allied genera Campanumoea and Leptocodon (Campanulaceae: Campanuloideae). Palynolodical data. Bot Bull Acad Sin 38:277–284

    Google Scholar 

  • Murthy GVS (1983) Pollen morphology of Indian Campanumoe Bl.—a revision of the Genus. J Palynol 18:55–59

    Google Scholar 

  • Narinder K, Vyasa D, Sanjay K (2007) Plants at high altitude exhibit higher component of alternative respiration. J Plant Physiol 164(1):31–38

    Article  Google Scholar 

  • Noirot M, Barre P, Louarn J, Duperray C, Hamon S (2000) Nucleus-cytosol interactions—a source of stoichiometric error in flow cytometric estimation of nuclear DNA content in plants. Ann Bot 86:309–316

    Article  CAS  Google Scholar 

  • Noirot M, Barre P, Duperray C, Hamon S, De Kochko A (2005) Investigation on the origins of stoichiometric error in genome size estimation using heat experiments. Consequences on data interpretation. Ann Bot 95:111–118

    Article  CAS  PubMed  Google Scholar 

  • Nonomura Ken-Ichi, Morohoshi Akane, Nakano Mutsuko et al (2007) A germ cell–specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice. Plant Cell 19(8):2583–2594

    Article  CAS  PubMed  Google Scholar 

  • Oh H, Kim DH, Cho JH, Kim YC (2004) Hepatoprotective and free radical scavenging activities of phenolic petrosins, flavonoids isolated from Equisetum arvense. J Ethnopharmacol 95:421–424

    Article  CAS  PubMed  Google Scholar 

  • Qiu JZ, Hong D-Y (1987) A cytogeographical study on Adenophora gmelinii complex (Campanulaceae). In: Hong D-Y (ed) Plant chromosome research. Proc. Sino—Jpn. symposium, P1. Chromos. Nishiki Print, Hiroshima, pp 69–73

  • Qiu JZ, Hong DY (1993) A biosystematic study in Adenophora gmelinii complex (Campanulaceae). Acta Phytotax. Sin. 31(1):17–41

    Google Scholar 

  • Raven PH (1975) The bases of angiosperm phylogeny: cytology. Ann Missouri Bot Gard 62:724–764

    Article  Google Scholar 

  • Reinhart BJ, Bartel DP (2002) Small RNAs correspond to centromere heterochromatic repeats. Science 297:1831

    Article  CAS  PubMed  Google Scholar 

  • Rieseberg LH (2001) Chromosomal rearrangements and speciation. Trends Ecol Evol 16:351–358

    Article  PubMed  Google Scholar 

  • Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K, Nakazato J, Durphy JL, Schwarzbach AE, Donovan LA, Lexer C (2003) Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301:1211–1216

    Article  CAS  PubMed  Google Scholar 

  • Rizzon C, Ponger L, Gaut BS (2006) Striking similarities in the genomic distribution of tandemly arrayed genes in Arabidopsis and rice. Plos Computat Biol 2:989–1000

    CAS  Google Scholar 

  • Schönland S (1889) Campanulaceae. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien IV, vol 5, pp 40–70. W. Engelmann, Leipzig

  • Shimizu T (1993) Campanulaceae. In: Iwatsuki K et al (eds) Flora of Japan, vol 3a. Kodansha, Tokyo, pp 405–418

  • Singh KP, Raina SN, Singh AK (1996) Variation in chromosomal DNA associated with the evolution of Arachis species. Genome 39:890–897

    Article  CAS  PubMed  Google Scholar 

  • Stalker HT, Dhesi JS, Kochert G (1995) Genetic diversity within the species Arachis duranensis Krapov. & W.C

  • Stebbins GL (1971) Chromosomal evolution in higher plant. Edward Arnold, London, pp 85–104

    Google Scholar 

  • Takhtajan AL (1987) Systema Magnoliophytorum. Nauka, Leningrad

    Google Scholar 

  • Temsch EM, Greilhuber J (2001) Genome size in Arachis duranensis: a critical study. Genome 44:826–830

    Article  CAS  PubMed  Google Scholar 

  • Thulin M (1975) The genus Wahlenbergia s. lat. (Campanulaceae) in tropical Africa and Madagascar. Symb Bot Upsal 21:1–223

    Google Scholar 

  • Tian YS, Zhao XM (2007) The karyotype analysis of chromosomes of Codonopsis pilosula (Franch.) Nannf. Chin Wild Plant Resour 2:105–110

    Google Scholar 

  • Tsoong PC (1935) Preliminary study on Chinese Campanulaceae. Contr Inst Bot Natl Acad Peiping 3:61–118

    Google Scholar 

  • Vision TJ, Brown DG, Tanksley SD (2000) The origins of genomic duplications in Arabidopsis. Science 290:2114–2117

    Article  CAS  PubMed  Google Scholar 

  • Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI et al (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297:1833–1837

    Article  CAS  PubMed  Google Scholar 

  • Volpe T, Schramke V, Hamilton GL, White SA, Teng G et al (2003) RNA interference is required for normal centromere function in fission yeast. Chromosome Res 11:137–146

    Article  CAS  PubMed  Google Scholar 

  • Wang K-Q, Song GE (1998) A karyotype study on five species of Adenophora. Acta Botanica Yunnanica 20(1):58–62

    CAS  Google Scholar 

  • White SA, Allshire RC (2009) RNAi-mediate chromatin silencing in fission yeast. Curr Top Microbiol Immunol 329:157–183

    Google Scholar 

  • Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713

    Article  CAS  PubMed  Google Scholar 

  • Xiaoyun D, Braun EL, Grotewold E (2001) Functional conservation of plant secondary metabolic enzymes revealed by complementation of Arabidopsis flavonoid mutants with maize genes. Plant Physiol 127:46–57

    Article  Google Scholar 

  • Yogeeswaran Krithika, Frary Amy, York Thomas L et al (2005) Comparative genome analyses of Arabidopsis spp.: inferring chromosomal rearrangement events in the evolutionary history of A. thaliana. Genome Res 15:505–515

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z-J, Yang xiao-sheng, Zhu wen-shi et al (2005) The primary study on chemical composite in Campanumoea javanica Bl. Chinese Tradit Herbal Drugs 36(8):1144–1146

    Google Scholar 

Download references

Acknowledgments

We thank the Chinese South-West Wild Germplasm Source Bank for material. Thanks are also due to Prof. CUI Ming-kun for helpful suggestions for improving the manuscript. Support by the National Natural Science Foundation of China (30660075, 40861019) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Feng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, YF., Zhang, CY., Zhang, T. et al. A cyto-evolutional study of Campanumoea Blume (Campanulaceae) and a possible pathway for secondary karyotype formation. Plant Syst Evol 285, 245–257 (2010). https://doi.org/10.1007/s00606-009-0265-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-009-0265-6

Keywords