Skip to main content
Log in

Extended phylogeny of Aquilegia: the biogeographical and ecological patterns of two simultaneous but contrasting radiations

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Studies of the North American columbines (Aquilegia, Ranunculaceae) have supported the view that adaptive radiations in animal-pollinated plants proceed through pollinator specialisation and floral differentiation. However, although the diversity of pollinators and floral morphology is much lower in Europe and Asia than in North America, the number of columbine species is similar in the three continents. This supports the hypothesis that habitat and pollinator specialisation have contributed differently to the radiation of columbines in different continents. To establish the basic background to test this hypothesis, we expanded the molecular phylogeny of the genus to include a representative set of species from each continent. Our results suggest that the diversity of the genus is the result of two independent events of radiation, one involving Asiatic and North American species and the other involving Asiatic and European species. The ancestors of both lineages probably occupied the mountains of south-central Siberia. North American and European columbines are monophyletic within their respective lineages. The genus originated between 6.18 and 6.57 million years (Myr) ago, with the main pulses of diversification starting around 3 Myr ago both in Europe (1.25–3.96 Myr ago) and North America (1.42–5.01 Myr ago). The type of habitat occupied shifted more often in the Euroasiatic lineage, while pollination vectors shifted more often in the Asiatic-North American lineage. Moreover, while allopatric speciation predominated in the European lineage, sympatric speciation acted in the North American one. In conclusion, the radiation of columbines in Europe and North America involved similar rates of diversification and took place simultaneously and independently. However, the ecological drivers of radiation were different: geographic isolation and shifts in habitat use were more important in Europe while reproductive isolation linked to shifts in pollinator specialisation additionally acted in North America.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alfaro ME, Zoller S, Lutzoni F (2003) Bayes or bootstrap: a simulation study comparing the performance of Bayesian Markov Chain Monte Carlo sampling and boostrapping in assessing phylogenetic confidence. Mol Biol Evol 20:255–266

    Article  CAS  PubMed  Google Scholar 

  • Anderson CL, Bremer K, Friis EM (2005) Dating phylogenetically basal eucots using rbcl sequences and multiple fossil reference points. Am J Bot 92:1737–1748

    Article  CAS  Google Scholar 

  • Arrigoni PV (2006) Flora dell’Isola di Sardegna, vol 1. Carlo Delfino, Sassari

    Google Scholar 

  • Bacchetta G, Iiriti G, Mossa L, Pontecorvo C, Serra G (2004) A phytosociological study of the Ostrya carpinifolia Scop. woods in Sardinia (Italy). Fitosociologia 41:67–75

    Google Scholar 

  • Barrclough TG, Vogler AP, Harvey PH (1998) Revealing the factors that promote speciation. Phil Trans R Soc Lond B 353:241–249

    Article  Google Scholar 

  • Beardsly PM, Schoening CB, Whittall JB, Olmstead RG (2004) The radiation of Mimulus in the western North America: systematic, hybridization, chromosomal evolution, cryptic biobiversity, and patterns of rarity. Am J Bot 91:474–489

    Article  Google Scholar 

  • Birks HJB, Willis KJ (2008) Alpines, trees and refugia in Europe. Plant Ecol Divers 1:147–160

    Article  Google Scholar 

  • Bochenski Z, Bochenski ZM (2008) An old world hummingbird from the Oligocene: a new fossil from Polish Carpathians. J Ornith 149:211–216

    Article  Google Scholar 

  • Bollback JP (2006) SIMMAP: stochastic character mapping of discrete traits on phylogenies. Bioinformatics 7:1–17

    Article  CAS  Google Scholar 

  • Chase VC, Raven PH (1975) Evolutionary and ecological relationship between Aquilegia formosa and Aquilegia pubescens (Ranunculaceae): two perennial plants. Evolution 29:474–486

    Article  Google Scholar 

  • Comes HP, Kadereit JW (2003) Spatial and temporal patterns in the evolution of the flora of the European Alpine system. Taxon 52:451–462

    Article  Google Scholar 

  • Damerval C, Nadot S (2007) Evolution of perianth and stamen characteristics with respect to floral symmetry in Ranunculales. Ann Bot 100:631–640

    Google Scholar 

  • Díaz Gonzáles TE (1986) “G. Aquilegia”. In: Castroviejo et al. (eds) Flora Ibérica. Real Jardín Botánico, C.S.I.C, Madrid

  • Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006) Relaxed phylogentics and dating with confidence. PLoS Biol 4:e88

    Article  PubMed  CAS  Google Scholar 

  • Drumond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    Article  CAS  Google Scholar 

  • Ellis AG, Weis AE, Gaut BS (2006) Evolutionary radiations of “stone plants” in the genus Argyroderma (Aizoaceae): unravelling the effects of landscape, habitat and flowering time. Evolution 60:39–55

    PubMed  Google Scholar 

  • Farris JS, Källersjö M, Kluge AG, Bult C (1994) Testing significance of incongruence. Cladistics 10:315–319

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Felsenstein J (1988) Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet 22:521–565

    Article  CAS  PubMed  Google Scholar 

  • Francisco-Ortega J, Jansen RK, Santos-Guerra A (1996) Chloroplast DNA evidence of colonization, adaptive radiation, and hybridization in the evolution of the Macaronesian flora. Proc Natl Acad Sci USA 93:4085–4090

    Article  CAS  PubMed  Google Scholar 

  • Francisco-Ortega J, Crawford DJ, Santos-Guerra A, Jansen RK (1997) Origin and evolution of Argyranthemum (Asteraceae: Anthemideae) in Macaronesia. In: Givnish TJ, Sytsma KJ (eds) Molecular evolution and adaptive radiation. Cambridge University Press, Cambridge, pp 406–431

    Google Scholar 

  • Francisco-Ortega J, Fuertes-Aguilar J, Gómez-Campo C, Santos-Guerra A, Jansen RK (1999) ITS sequence phylogeny of Crambe L. (Brassicaceae): molecular data reveal two old world disjunctions. Mol Phyl Evol 11:361–380

    Article  CAS  Google Scholar 

  • Fu D, Li L, Bartholomew B, Brach AR, Dutton BE, Gilbert MG, Kadota Y, Robinson OR, Tamura M, Warnock MJ, Guanghua Z, Ziman SN (2001) Ranunculaceae. In: Wu Z, Raven PH, Hong D (eds) Flora of China, vol. 6. Missouri Botanical Garden Press, St. Louis, pp 133–148

  • Fulton M, Hodges SA (1999) Floral isolation between Aquilegia formosa and Aquilegia pubescens. Proc R Soc Lond B 266:2247–2252

    Article  Google Scholar 

  • Gafta D, Muncaciu S, Csergö A-M (2006) Morphometric variation in a rare endemic Aquilegia (Ranunculaceae) in the Carpathians. Plant Biosyst 140:297–306

    Article  Google Scholar 

  • García-Maroto F, Mañas-Fernández A, Garrido-Cárdenas JA, López Alonso D, Guil-Guerrero JL, Guzmán B, Vargas P (2009) Δ6-Desaturase sequence evidence for explosive Pliocene radiations within the adaptive radiation of Macaronesian Echium (Boraginaceae). Mol Phyl Evol 52:563–574

    Article  CAS  Google Scholar 

  • Givnish TJ, Montgomery RA, Goldstein G (2004) Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: light regimes, static light responses, and whole-plant compensation points. Am J Bot 91:228–246

    Article  CAS  Google Scholar 

  • Grant V (1993) Origin of floral isolation between ornithophilous and sphingophilous plant species. Proc Natl Acad Sci USA 90:7729–7730

    Article  CAS  PubMed  Google Scholar 

  • Grant V (1994) Historical development of ornithophily in the western North American flora. Proc Natl Acad Sci USA 91:10407–10411

    Article  CAS  PubMed  Google Scholar 

  • Grant V, Grant KA (1965) Flower pollination in the phlox family. Columbia University Press, New York

    Google Scholar 

  • Guzmán B, Lledó MD, Vargas P (2009) Adaptive radiation in Mediterranean Cistus. PLoS One 4:1–13

    Article  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignmeant edition and analysis program for Windows 95/98/NT. Nucleid Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hamilton MB (1999) Four primers pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Mol Ecol 8:521–523

    CAS  PubMed  Google Scholar 

  • Herrera CM, García IM, Pérez R (2008) Invisible floral larcenies: microbial communities degrade floral nectar of bumble bee-pollinated plants. Ecology 89:2369–2376

    Article  PubMed  Google Scholar 

  • Hodges SA (1994) Floral and ecological isolation between Aquilegia formosa and Aquilegia pubescens. Proc Natl Acad Sci USA 91:2493–2496

    Article  CAS  PubMed  Google Scholar 

  • Hodges SA (1997) Floral nectar spurs and diversification. Int J Plant Sci 158:S81–S88

    Article  Google Scholar 

  • Hodges SA, Arnold ML (1994) Columbines: a geographically widespread species flock. Proc Natl Acad Sci USA 91:5129–5132

    Article  CAS  PubMed  Google Scholar 

  • Hodges SA, Arnold ML (1995) Spurring plant diversification: are floral nectar spurs a key innovation? Proc R Soc Lond B 262:343–348

    Article  Google Scholar 

  • Hodges SA, Fulton M, Yang JY, Whittall JB (2003) Verne Grant and evolutionary studies of Aquilegia. New Phytol 161:113–120

    Article  Google Scholar 

  • Huelsenbeck JP, Nielsen R, Bollback JP (2003) Stochastic mapping of morphological characters. Syst Biol 52:113–158

    Google Scholar 

  • Hughes C, Eastwood R (2006) Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc Natl Acad Sci USA 103:10334–10339

    Article  CAS  PubMed  Google Scholar 

  • Jalas J, Suominen J (1989) Atlas Florae Europaeae. Distribution of vascular plants in Europe. 8. Nymphaceae to Ranunculaceae. The Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo, Helsinki

  • Johnson LA, Soltis DE (1994) MatK DNA and phylogenetic reconstruction in Saxifragaceae s. str. Syst Bot 19:143–156

    Article  Google Scholar 

  • Kay KM, Whittall JB, Hodges SA (2006) A survey of nuclear ribosomal internal transcribed spacer substitution rates across angiosperms: an approximate molecular clock with life history effects. BCM Evol Biol 6:36

    Article  CAS  Google Scholar 

  • Kelchner SA (2000) The evolution of non-coding chloroplast DNA and its applications on plant systematics. Ann Mo Bot Gard 87:482–498

    Article  Google Scholar 

  • Knobloch E, Mai DH (1986) Monographie der Früchte und Samen in der Kreide von Mitteleuropa. Rozpravy ústredního ústavu geologickénho Praha 47:1–219

    Google Scholar 

  • Knuth P (1906-09) Handbook of flower pollination. Clarendon, Oxford

  • LaRoche G (1978) An experimental study of population differences in leaf morphology of Aquilegia canadensis. Am Midl Nat 100:341–349

    Article  Google Scholar 

  • LaRoche G (1980) The effects of restricting root growing space, decreasing nutrient supply and increasing water stress on the phenetics of Aquilegia canadensis L. (Ranunculaceae). Bull Torrey Bot Club 107:220–222

    Article  Google Scholar 

  • Lavergne S, Thompson JD, Garnier E, Debussche M (2004) The biology and ecology of narrow endemic and widespread plants: a comparative study of trait variation in 20 congeneric pairs. Oikos 107:505–518

    Article  Google Scholar 

  • Lavergne S, Debussche M, Thompson JD (2005) Limitations on reproductive success in endemic Aquilegia viscosa (Ranunculaceae) relative to its widespread congener Aquilegia vulgaris: the interplay of herbivory and pollination. Oecologia 142:212–220

    Article  PubMed  Google Scholar 

  • Lavin M, Herendeen P, Wojciechowski MF (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the Tertiary. Syst Biol 54:530–549

    Article  Google Scholar 

  • Louchart A, Tourment N, Carrier J, Roux T, Mourer-Chauviré C (2008) Hummingbird with modern feathering: an exceptionally well-preserved Oligocene fossil from southern France. Naturwissenschaften 95:171–175

    Article  CAS  PubMed  Google Scholar 

  • Marincovich L Jr, Gladenkov AY (2001) New evidence for the age of Bering Strait. Quaternary Sci Rev 20:329–335

    Article  Google Scholar 

  • Matthiessen J, Knies J, Vogt C, Stein R (2009) Pliocene palaeoceanography of the Arctic Ocean and subarctic seas. Phil Trans R Soc A 367:21–48

    Article  PubMed  Google Scholar 

  • Mayr G (2004) Old World fossil record of modern—type hummingbirds. Science 304:810–811

    Article  CAS  Google Scholar 

  • Medrano M, Castellanos MC, Herrera CM (2007) Comparative floral and vegetative differentiation between two European Aquilegia taxa along a narrow contact zone. Plant Syst Evol 262:209–224

    Article  Google Scholar 

  • Miller RB, Willard CL (1983) The pollination ecology of Aquilegia micrantha (Ranunculaceae) in Colorado. Southw Nat 28:157–164

    Article  Google Scholar 

  • Müller H (1883) The fertilization of flowers. MacMillan, London

    Google Scholar 

  • Munz PA (1946) Aquilegia: the cultivated and wild columbines. In: Bailey LH (eds) Gentes Herbarium 7:1-50

  • Nielsen R (2002) Mutations mapping on phylogenies. Syst Biol 51:729–732

    Article  PubMed  Google Scholar 

  • Nold R (2003) Columbines. Aquilegia, Paraquilegia and Semiaquilegia. Timber Press, Cambridge

    Google Scholar 

  • Paradis E (2008) Asymmetries in phylogenetic diversification and character change can be untangled. Evolution 62:241–247

    PubMed  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analysis of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  PubMed  Google Scholar 

  • Patterson TB, Givnish J (2003) Geographic cohesion, chromosomal evolution, parallel adaptive radiations, and consequent floral adaptations in Calochortus (Calochortaceae): evidence from a cpDNA phylogeny. New Phytol 161:253–264

    Article  CAS  Google Scholar 

  • Pignatti S (1982) Flora d`Italia. Edagricole, Bologna

  • Polyakova MA, Dits LY, Ermakov NB (2008) Studies on biological features of band pine forests in the intermontane Minusinsk depression by methods of gradient analysis. Russ J Ecol 39:238–245

    Article  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Rambaut A, Drummond AJ (2007) Tracer v.1.4.1. http://beast.bio.ed.ac.uk/tracer

  • Ro K-E, McPheron B (1997) Molecular phylogeny of the Aquilegia group (Ranunculaceae) based on internal transcribed spacers and 5.8S nuclear ribosomal DNA. Biochem Syst Ecol 25:445–461

    Article  CAS  Google Scholar 

  • Ro K-E, Keener CS, McPheron BA (1997) Molecular phylogenetic study of the Ranunculaceae: utility of the nuclear 26S ribosomal DNA in inferring intrafamilial relationships. Mol Phyl Evol 8:117–127

    Article  CAS  Google Scholar 

  • Robichaux RH, Carr GD, Liebman M, Pearcy RW (1990) Adaptive radiation of the Hawaiian silversword alliance (Compositae-Madiinae): ecological, morphological and physiological diversity. Ann Mo Bot Gard 77:64–72

    Article  Google Scholar 

  • Rodríguez F, Oliver JF, Marín A, Medina JR (1990) The general stochastic model of nucleotide substitution. J Theor Biol 142:485–501

    Article  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Sanderson MJ (1998) Estimating rate and time in molecular phylogenies: beyond the molecular clock? In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants II: DNA sequencing. Kluwer, New York, pp 242–264

    Google Scholar 

  • Sang T, Crawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution and biogeography of Paeonia (Paeoniaceae). Am J Bot 84:1120–1136

    Article  CAS  Google Scholar 

  • Schluter D (1996) Ecological causes of adaptive radiation. Am Nat 148:S40–S64

    Article  Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford Series in Ecology and Evolution. Oxford University Press, New York

  • Schönswetter P, Popp M, Brochmann C (2006) Central Asian origin of and strong genetic differentiation among populations of the rare and disjunct Carex atrofusca (Cyperaceae) in the Alps. J Biogeogr 33:948–956

    Article  Google Scholar 

  • Semerikov VL, Zang HQ, Sun M, Lascoux M (2003) Conflicting phylogenies of Larix (Pinaceae) based on cytoplasmatic and nuclear DNA. Mol Phyl Evol 27:173–184

    Article  CAS  Google Scholar 

  • Simmons MP, Ochotorena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381

    Article  CAS  PubMed  Google Scholar 

  • Stebbins GL (1970) Adaptive radiation of reproductive characteristics in angiosperms. I. Pollination mechanisms. Annu Rev Ecol Syst 1:307–326

    Article  Google Scholar 

  • Strand AE, Brook GM, Pruit CS (1996) Are populations island? Analysis of chloroplast DNA variation in Aquilegia. Evolution 50:1822–1829

    Article  Google Scholar 

  • Sun Y, Skinner DZ, Liang GH, Hulbert SH (1994) Phylogenetic analysis of sorghum and related taxa using internal transcribed spacer of nuclear ribosomal DNA. Theor Appl Gen 89:26–32

    Article  CAS  Google Scholar 

  • Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony, version 4.010b. Sinauer Associates, Sunderland

    Google Scholar 

  • Tang L-L, Yu Q, Sun J-F, Huang S-Q (2007) Floral traits and isolation of three sympatric Aquilegia species in the Qinling Mountains, China. Plant Syst Evol 267:121–128

    Article  Google Scholar 

  • Tucker SC, Hodges SA (2005) Floral ontogeny of Aquilegia, Semiaquilegia, and Enemion (Ranunculaceae). Int J Plant Sci 166(4):557–574

    Article  Google Scholar 

  • Verboom GA, Linder HP, Stock W (2003) Phylogenetics of the grass genus Ehrharta: evidence for adaptive radiation in the summer-arid zone of the South African Cape. Evolution 57:1008–1021

    PubMed  Google Scholar 

  • Verboom GA, Linder HP, Stock WD (2004) Testing the adaptive nature of radiation: growth form and life history divergence in the African grass genus Ehrharta (Poaceae: Ehrhartoideae). Am J Bot 91:1364–1370

    Article  Google Scholar 

  • Wang W, Chen Z-D (2007) Generic level phylogeny of Thalictroideae (Ranunculaceae) implications for the status of Paropyrum and petal evolution. Taxon 56:811–821

    Article  Google Scholar 

  • Weber WA (2003) The Middle Asian element in the southern Rocky Mountain flora of the western United States: a critical biogeographical review. J Biogeog 30:649–685

    Article  Google Scholar 

  • Whittall JB (2005) Ecological speciation and convergent evolution in the North American columbine radiation (Aquilegia, Ranunculaceae). PhD Thesis, UC Santa Barbara, Santa Barbara

  • Whittall JB, Hodges SA (2007) Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 447:706–710

    Article  CAS  PubMed  Google Scholar 

  • Whittemore AT (1997) Aquilegia. In: Morin NR (ed) Flora of North America. Oxford University Press, New York

    Google Scholar 

  • Wikström N, Savolainen V, Chase M (2001) Evolution of angiosperms: calibrating the family tree. Proc R Soc Lond B 268:2211–2222

    Article  Google Scholar 

  • Wolfe AD, Randle CP, Datwyler SL, Morawetz JJ, Arguedas N, Díaz J (2006) Phylogeny, taxonomic affinities, and biogeography of Penstemon (Plantaginaceae) based on ITS and cpDNA sequence data. Am J Bot 93:1699–1713

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the many botanical gardens (listed in Appendix 1) that provided plant material used in this study. Emilio Cano (Real Jardín Botánico de Madrid) generously offered assistance in molecular techniques. This work was supported by the Spanish Ministerio de Educación y Ciencia (projects BOS2003-03979-C02/01-02 and CGL2006-02848). During this work J.M.B. was supported with grant BES-2004-3387 of Spanish MEC. We thank Zhi Duan Chen and Wei Wang for kindly providing the molecular sequences for some of the outgroup taxa used in our study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio M. Alcántara.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bastida, J.M., Alcántara, J.M., Rey, P.J. et al. Extended phylogeny of Aquilegia: the biogeographical and ecological patterns of two simultaneous but contrasting radiations. Plant Syst Evol 284, 171–185 (2010). https://doi.org/10.1007/s00606-009-0243-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-009-0243-z

Keywords

Navigation