Taxonomic and ecological implications of leaf cuticular morphology in Castanopsis, Castanea, and Chrysolepis

Original Article

Abstract

Leaves of 41 species of Castanopsis, six species of Castanea, and Chrysolepischrysophyllum Hjelmq. were examined. In Castanopsis, all species possessed cyclocytic stomata with thickened subsidiary cells; thin-walled peltate trichomes are the most frequent type on the abaxial surface of the leaves of this genus. In Castanea, stomata are transitional between cyclocytic and anomocytic; thin-walled peltate trichomes were recorded for the first time on the abaxial surface of Castanea leaves. In Chrysolepis, cyclocytic stomata with non-thickened subsidiary cells and thick-walled peltate trichomes were observed. The thickened subsidiary cells support the placement of the “fissa-group” in Castanopsis. The results of this study support the idea that Castanopsis and Castanea are sister groups. Thick-walled peltate trichomes were only recorded in Chrysolepis, thus supporting its taxonomic separation from Castanopsis. The phylogenetic distribution of trichome types among genera of Fagaceae is summarized. The evolutionary trends of trichome types in Castanopsis are discussed, as are the implications of stomatal and trichome features on fossil identification and ecology.

Keywords

Fagaceae Leaf anatomy Taxonomy Palaeobotany Ecology 

References

  1. Abbe EC (1974) Flowers and inflorescences of the “Amentiferae”. Bot Rev 40:159–261CrossRefGoogle Scholar
  2. Baranova M (1972) Systematic anatomy of the cuticle in the Magnoliaceae and some related families. Taxon 21:447–469CrossRefGoogle Scholar
  3. Baranova M (1987) Historical development of the current classification of morphological types of stomata. Bot Rev 53:53–79CrossRefGoogle Scholar
  4. Baranova M (1992) Principles of comparative stomatographic studies of flowering plants. Bot Rev 58:1–99CrossRefGoogle Scholar
  5. Barnett EC (1944) Keys to the species groups of Quercus, Lithocarpus and Castanopsis of eastern Asia, with notes on their distribution. Trans Bot Soc Edinburgh 34:159–204Google Scholar
  6. Brett DW (1964) The inflorescence of Fagus and Castanea, and the evolution of the cupules of the Fagaceae. New Phytol 63:96–118CrossRefGoogle Scholar
  7. Camus A (1928–1929) Encyclopèdie èconomique de sylviculture, vol 3, Les châtaigniers. Monographie des Castanea et Castanopsis. Académie des Sciences, ParisGoogle Scholar
  8. Camus A (1934–1954) Les chenes monographie du genre Quercus (et Lithocarpus). Encyclopèdie èconomique de sylviculture, vols 6–8. Académie des Sciences, ParisGoogle Scholar
  9. Chen YQ (2007) Phylogeny and biogeography of Fagaceae. Ph. D thesis, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, pp 16–35Google Scholar
  10. Crepet WL (1989) History and implications of the early North American fossil record of Fagaceae. In: Crane PR, Blackmore S (eds) Evolution systematics and fossil history of the Hamamelidae, vol 2, “Higher” Hamamelidae. Clarendon Press, Oxford, pp 45–66Google Scholar
  11. Elias TS (1971) The genera of Fagaceae in the southeastern United States. J Arnold Arbor 52:159–195Google Scholar
  12. Forman LL (1964) Trigonobalanus a new genus of Fagaceae, with notes on the classification of the family. Kew Bull 17:381–396CrossRefGoogle Scholar
  13. Forman LL (1966a) Generic delimitation in the Castaneoideae. Kew Bull 18:421–426CrossRefGoogle Scholar
  14. Forman LL (1966b) On the evolution of cupules in the Fagaceae. Kew Bull 18:385–419CrossRefGoogle Scholar
  15. Govaerts R, Fordin DG (1998) World checklist and bibliography of Fagales (Betulaceae, Corylaceae, Fagaceae and Ticodenraceae). Royal Botanical Garden, Kew, pp 119–138Google Scholar
  16. Hjelmqvist H (1948) Studies on the floral morphology and phylogeny of the Amentifereae. Bot Not, Suppl 2:1–171Google Scholar
  17. Huang CJ, Zhang YT, Bruce B (1999) Fagaceae. Flora of China, vol 4. Science Press, Beijing, pp 314–400Google Scholar
  18. Hutchinson J (1967) The genera of flowering plants, vol 2. Clarendon Press, OxfordGoogle Scholar
  19. Johnson GP (1988) Revision of Castanea sect. Balanocastanon (Fagaceae). J Arnold Arboretum 69:25–49Google Scholar
  20. Jones JH (1984) Leaf architectural and cuticular analyses of extant Fagaceae and ‘Fagaceous’ leaves from the Paleogene of southeastern North America. Ph. D. thesis, Indiana University, BloomingtonGoogle Scholar
  21. Jones JH (1986) Evolution of the Fagaceae: the implications of foliar features. Ann Missouri Bot Gard 73:228–275CrossRefGoogle Scholar
  22. Kaul RB (1986) Evolution and reproductive biology of inflorescences in Lithocarpus, Castanopsis, Castanea, and Quercus (Fagaceae). Ann Missouri Bot Gard 73:284–296CrossRefGoogle Scholar
  23. Kvaček Z, Walther H (1988) Revision der mitteleuropäischen tertiären Fagaceen nach blattepidermalen Charakteristiken. II Teil—Castanopsis (D. Don) Spach, Trigonobalanus Forman, Trigonobalanopsis Kvacek & Walther. Feddes Repertorium 99:395–418 and plates XXVII to LVIIGoogle Scholar
  24. Kvaček Z, Walther H (1989) Paleobotanical studies in Fagaceae of the European tertiary. Plant Syst Evol 162:213–229CrossRefGoogle Scholar
  25. Kvaček Z, Walther H (1991) Revision der mitteleuropäischen tertiären Fagaceen nach blattepidermalen Charakteristiken. IV. Teil Fagus Linné. Feddes Repertorium 102(7–8):471–534Google Scholar
  26. Lee CS (1968) Comparative wood anatomy of the Fagaceae of Taiwan. M.Sc. thesis, Oregon. State University, CorvallisGoogle Scholar
  27. Li RQ, Chen ZD, Lu AM, Soltis DE, Soltis PS, Manos PS (2004) Phylogenetic relationships in Fagales based on DNA sequences from three genomes. Int J Plant Sci 165:311–324CrossRefGoogle Scholar
  28. Lozano-C G, Hernández-Comacho J, Henao-S JE (1979) Hallzago del género Trigonobalanus Forman, 1962 (Fagaceae) en el neotrópico—I. Caldasia 12:517–537Google Scholar
  29. Luo Y, Zhou ZK (2001) Cuticle of Quercus sugen. Cyclobalanopsis (Oerst.) chneid. (Fagaceae). Acta Phytot Sin 39:489–501Google Scholar
  30. Maddison WP, DR Maddison (2006) Mesquite: a modular system for evolutionary analysis, version 1.12. http://mesquiteproject.org
  31. Manchester SR, Dillhoff RM (2004) Fagus (Fagaceae) fruits, foliage and pollen from the Middle Eocene of Pacific Northwestern North America. Can J Bot 82(10):1509–1517CrossRefGoogle Scholar
  32. Manos PS, Zhou ZK, Cannon CH (2001) Systematics of Fagaceae: phylogenetic tests of reproductive trait evolution. Int J Plant Sci 162(6):1361–1379CrossRefGoogle Scholar
  33. Melchior H (1964) Reihe Fagales. In: Engler A (ed) Syllabus der Pflanzenfamilien, 12 edn, vol 2. Berlin, pp 44–51Google Scholar
  34. Moldovan I, Moldovan A (1993) The epidermical study of sweet chestnut-tree leaf (Castanea sativa Hill.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca XXII–XXIII:5–9Google Scholar
  35. Nixon KC (1989) Origins of Fagaceae. In: Crane PR, Blackmore S (eds) Evolution systematics and fossil history of the Hamamelidae, vol 2. “Higher” Hamamelidae. Clarendon Press, Oxford, pp 23–44Google Scholar
  36. Nixon KC (1997) Fagaceae. In: Flora of North America Editorial Committee (eds) Flora of North America north of Mexico, vol 3. Oxford University Press, New YorkGoogle Scholar
  37. Oersted AS (1871) Bidrag til kundskab om Egefamilien i Nutid og Fortid. Vidensk. Selsk. Skr. 5 Raekke, Natur. Og Math 9:333–538Google Scholar
  38. Oh SH, Manos PS (2008) Molecular phylogenetics and cupule evolution in Fagaceae as inferred from nuclear CRABS CLAW sequences. Taxon 57:434–451Google Scholar
  39. Prantl K (1894) Fagaceae. In: Engler A, Prantl K (eds) Die natürlichen pflanzenfamilien. Wilhelm Engelmann, LeipzigGoogle Scholar
  40. Rüffle L, Müller-Stoll WR, Litke R (1976) Eozāne Floren des Geiseltales. Abh Zentr Geol Inst (Berlin) 26:199–238Google Scholar
  41. Shen CF (1992) A monograph of the genus Fagus Tourn. ex L. (Fagaceae). Ph.D. Dissertation, The City University of New YorkGoogle Scholar
  42. Smiley CJ, Huggins LM (1981) Pseudofagus idahoensis, n. gen. et sp. (Fagaceae) from the Miocene Clarkia flora of Idaho. Am J Bot 68:741–761CrossRefGoogle Scholar
  43. Soepadmo E (1972) Fagaceae. Flora Malesiana 7(2):265–403Google Scholar
  44. Stace CA (1965) Cuticular studies as an aid to plant taxonomy. Bull Br Mus (Nat Hist) Bot 4:3–78Google Scholar
  45. Stace CA (1984) The taxonomic importance of the leaf surface. In: Heywood VH, Moore DM (eds) Current concepts in plant taxonomy. Systematic Association Special vol 25. Academic Press, LondonGoogle Scholar
  46. Upchurch GR (1984a) Cuticle evolution in Early Cretaceous angiosperms from the Potomac Group of Virginia and Maryland. Ann Missouri Bot Gard 71:522–550CrossRefGoogle Scholar
  47. Upchurch GR (1984b) Cuticular anatomy of angiosperm leaves from the Lower Cretaceous Potomac Group. I. Zone I leaves. Am J Bot 71:192–202CrossRefGoogle Scholar
  48. Uzunova K, Palamarev E, Ehrendorfer F (1997) Anatomical changes and evolutionary trends in the foliar cuticle of extant and fossil Euro-Mediterranean oaks (Fagaceae). Plant Syst Evol 204:141–159CrossRefGoogle Scholar
  49. Wang PL, Chang KT (1991) The pollen morphology in relation to the taxonomy and phylogeny of Fagaceae. Acta Phytot Sin 29(1):60–66Google Scholar
  50. Wilkinson HP (1979) Anatomy of the dicotyledons, 2nd edn. Clarendon Press, Oxford, pp 97–165Google Scholar
  51. Willis JC (1973) A dictionary of flowering plants and ferns, 8th edn. Cambridge University Press, CambridgeGoogle Scholar
  52. Zhou ZK, Wilkinson HP, Wu ZY (1995) Taxonomical and evolutionary implications of the leaf anatomy and architecture of Quercus L. Subg. Quercus from China. Cathaya 7:1–34Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Key Laboratory of Biodiversity and Biogeography, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
  2. 2.Graduate School of Chinese Academy of SciencesBeijingChina
  3. 3.School of Ecological Technology and EngineeringShanghai Institute of TechnologyShanghaiChina

Personalised recommendations