Skip to main content
Log in

Genetic structure of peripheral, island-like populations: a case study of Saponaria bellidifolia Sm. (Caryophyllaceae) from the Southeastern Carpathians

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Geographically peripheral populations often experience a reduction of genetic diversity and divergence from the core populations. Habitat geometry and quality can induce a local genetic diversity pattern, which overlies the regional variability issued from the range-wide phylogeography. We evaluated the genetic variation and genetic divergence of Saponaria bellidifolia Sm. on limestone outcrops within peripheral island-like populations from the Southeastern Carpathians, using RAPD markers. We also determined the degree of isolation related to other European populations, using AFLP. The Romanian populations had a decreased overall genetic diversity shared among populations, with lower level in small populations. Potential habitat size had a positive effect on genetic diversity estimates. Fisher’s exact tests of genetic differentiation revealed significant divergences only between the geographically most distant populations. Romanian populations were genetically pauperised as compared to Bulgarian and Italian populations and our results suggest that they might have originated from a recent range expansion from southern glacial refugia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antonovics J (1976) The nature of limits to natural selection. Ann Mo Bot Gard 63(2):224–247

    Article  Google Scholar 

  • Booy G, Hendriks RJJ, Smulders MJM, Van Groenendael JM, Vosman B (2000) Genetic diversity and the survival of populations. Plant Biol 2:379–395

    Article  Google Scholar 

  • Boşcaiu N (1971) Flora şi vegetaţia Munţilor Ţarcu, Godeanu şi Cernei. Acad. R.S.R., Bucureşti

  • Boşcaiu N, Marossy A (1980–1981) Interferenţe fitogeografice din Munţii Apuseni. Nymphaea 8–9:395–400

    Google Scholar 

  • Brown JH (1984) On the relationship between abundance and distribution of species. Am Nat 124(2):255–279

    Article  Google Scholar 

  • Cain ML, Brook GM, Strand AE (2000) Long-distance seed dispersal in plant populations. Am J Bot 87(9):1217–1227

    Article  PubMed  Google Scholar 

  • Cotrim HC, Chase MW, Pais MS (2003) Silene rothmaleri P. Silva (Caryophyllaceae), a rare, fragmented but genetically diverse species. Biodivers Conserv 12:1083–1098

    Article  Google Scholar 

  • Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    Article  PubMed  CAS  Google Scholar 

  • Eckstein RL, O’Neill RA, Danihelka J, Otte A, Köhler W (2006) Genetic structure among and within peripheral and central populations of three endangered floodplain violets. Mol Ecol 15:2367–2379

    Article  PubMed  CAS  Google Scholar 

  • Ellstrand N, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    CAS  Google Scholar 

  • Gaudeul M, Taberlet P, Till-Bottraud I (2000) Genetic diversity in an endangered alpine plant, Eryngium alpinum L. (Apiaceae), inferred from amplified fragment length polymorphism markers. Mol Ecol 9:1625–1637

    Article  PubMed  CAS  Google Scholar 

  • Hatcher PE, Wilkinson MJ, Albani MC, Hebbern CA (2004) Conserving marginal populations the food plant (Impatiens noli-tangere) of an endangered moth (Eustroma reticulatum) in a changing climate. Biol Conserv 116:305–317

    Article  Google Scholar 

  • Herlihy CR, Eckert CG (2005) Evolution of self-fertilisation at geographical range margins? A comparison of demographic, floral and mating system variables in central vs. peripheral populations of Aquilegia canadensis (Ranunculaceae). Am J Bot 92(4):744–751

    Article  Google Scholar 

  • Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc Lond 68:87–112

    Article  Google Scholar 

  • Holt RD (2003) On the evolutionary ecology of species’ ranges. Evol Ecol Res 5:159–178

    Google Scholar 

  • Jalas J, Suominen J (eds) (1986) Atlas Florae Europaeae. Distribution of vascular plants in Europe, vol 7. Caryophyllaceae (Silenoideae). The Committee for Mapping the Flora of Europe & Societas Biologica Fennica Vanamo, Helsinki

  • Jones B, Gliddon C, Good JEG (2001) The conservation of variation in geographically peripheral populations: Lloydia serotina (Liliaceae) in Britain. Biol Conserv 101:147–156

    Article  Google Scholar 

  • Kropf M, Kadereit JW, Comes HP (2002) Late Quaternary distributional stasis in the Submediterranean mountain plant Anthyllis montana L. (Fabaceae) inferred from ITS sequences and amplified fragment length polymorphism markers. Mol Ecol 11:447–463

    Article  PubMed  CAS  Google Scholar 

  • Lakušić R (1970) Die Vegetation der Südöstlichen Dinariden. Vegetatio 21:321–373

    Article  Google Scholar 

  • Lammi A, Siikamäki P, Mustajärvi K (1999) Genetic diversity, population size and fitness in central and peripheral populations of a rare plant Lychnis viscaria. Conserv Biol 13(5):1069–1078

    Article  Google Scholar 

  • Leimu R, Mutikainen P (2004) Population history, mating system, and fitness variation in a perennial herb with a fragmented distribution. Conserv Biol 19(2):349–356

    Article  Google Scholar 

  • Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation? Conserv Biol 9(4):753–760

    Article  Google Scholar 

  • Lönn M, Prentice HC (2002) Gene diversity and demographic turnover in central and peripheral populations of the perennial herb Gypsophila fastigiata. Oikos 99:489–498

    Article  Google Scholar 

  • Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Annu Rev Ecol Syst 15:65–95

    Article  Google Scholar 

  • Miller MP (1997) Tools for population genetic analyses (TFPGA) 1.3: a Windows program for the analysis of allozyme and molecular population genetic data. Computer software distributed by the author

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Nybom H, Bartish IV (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Plant Ecol Evol Syst 3(2):93–114

    Article  Google Scholar 

  • R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Sagarin RD, Gaines SD, Gaylord B (2006) Moving beyond assumptions to understand abundance distributions across the ranges of species. Trends Ecol Evol 21(9):524–530

    Article  PubMed  Google Scholar 

  • Schönswetter P, Tribsch A, Barfuss M, Niklfeld H (2002) Several Pleistocene refugia detected in the high alpine plant Phyteuma globulariifolium Sternb. & Hoppe (Campanulaceae) in the European Alps. Mol Ecol 11:2637–2647

    Article  PubMed  Google Scholar 

  • Sokal R, Rohlf FJ (1995) Biometry. W.H. Freeman and Co., New York

    Google Scholar 

  • Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson J-F (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464

    Article  PubMed  CAS  Google Scholar 

  • Tero N, Aspi J, Siikamäki P, Jäkäläniemi A (2005) Local genetic population structure in an endangered plant species, Silene tatarica (Caryophyllaceae). Heredity 1–10

  • Torres E, Iriondo JM, Escudero A, Perez C (2003) Analysis of within-population spatial genetic structure in Antirrhinum microphyllum (Scrophulariaceae). Am J Bot 90(12):1688–1695

    Article  Google Scholar 

  • Travis JMJ, Ezard THG (2006) Habitat geometry, population viscosity and the rate of genetic drift. Ecol Inform 1:153–161

    Article  Google Scholar 

  • Trewick SA, Morgan-Richards M, Russel SJ, Henderson S, Rumsey FJ, Pintér I, Barrett JA, Gibby M, Vogel JC (2002) Polyploidy, phylogeography, and Pleistocene refugia of the rockfern Asplenium ceterach: evidence from chloroplast DNA. Mol Ecol 11:2003–2012

    Article  PubMed  CAS  Google Scholar 

  • Van de Peer Y, De Wachter R (1997) Construction of evolutionary distance trees with TREECON for Windows: accounting for variation in nucleotide substitution rate among sites. Comput Appl Biosci 13:227–230

    PubMed  Google Scholar 

  • Van Rossum F, Vekemans X, Gratia E, Meerts P (2003) A comparative study of allozyme variation of peripheral and central populations of Silene nutans L. (Caryophyllaceae) from Western Europe: implications for conservation. Plant Syst Evol 242:49–61

    Article  Google Scholar 

  • Wolf AT, Harrison SP (2001) Effects of habitat size and patch isolation on reproductive success of the serpentine morning glory. Conserv Biol 15(1):111–121

    Article  Google Scholar 

  • Wróblewska A, Brzosko E (2006) The genetic structure of the steppe plant Iris aphylla L. at the northern limit of its geographical range. Bot J Linn Soc 152:245–255

    Google Scholar 

  • Yakimowski SB, Eckert CG (2007) Threatened peripheral populations in context: geographical variation in population frequency and size and sexual reproduction in a clonal woody shrub. Conserv Biol 21(3):811–822

    Article  PubMed  Google Scholar 

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11(10):413–418

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the team of the Department of Genetics and Plant Breeding from Corvinus University of Budapest, especially Bacskainé Papp Anna, as well as to Lányi Szabolcs from Sapientia Hungarian University of Transylvania and Somogyi Gabriella from the Department of Botany, Corvinus University of Budapest for their help with laboratory works. We express our gratitude to the anonymous reviewers, whose comments have considerably improved the manuscript. Plant material was kindly provided by Gérard Largier, Jocelyne Cambecèdes and Delphine Fallour (France), Marija Edita-Šolić (Croatia), Fabio Conti (Italy) and Vladimir Vladimirov (Bulgaria). Research was part of Csergő Anna-Maria’s Ph.D. thesis and was partially supported by Domus Hungarica Scientiarum et Artium, Hungary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna-Mária Csergö.

Additional information

N. Boşcaiu is deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Csergö, AM., Schönswetter, P., Mara, G. et al. Genetic structure of peripheral, island-like populations: a case study of Saponaria bellidifolia Sm. (Caryophyllaceae) from the Southeastern Carpathians. Plant Syst Evol 278, 33–41 (2009). https://doi.org/10.1007/s00606-008-0129-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-008-0129-5

Keywords

Navigation