Skip to main content
Log in

Multiple hybridization origin of Ranunculus cantoniensis (4x): evidence from trnL-F and ITS sequences and fluorescent in situ hybridization (FISH)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

ITS sequences of Ranunculus cantoniensis apparently an allotetraploid were polymorphic at ten nucleotide sites. ITS-based phylogeny of the complex and its allied species showed that ITS clones of the tetraploid were clustered with R. silerifolius var. silerifolius, R. chinensis, R. silerifolius var. dolicathus and R. trigonus. Chloroplast trnL-F phylogeny showed that the complex is a natural group, in which the tetraploid shared the same clade with R. silerifolius var. dolicathus and R. silerifolius var. silerifolius, whose genetic distances were zero. rDNA FISH showed that the longest rDNA-chromosome of the tetraploid was similar to that of R. silerifolius var. dolicathus exclusively. Combining trnL-F, ITS and FISH data, it is suggested that the most probable parents of the tetraploid were R. silerifolius var. silerifolius, R. chinensis and R. silerifolius var. dolicathus, among them R. silerifolius var. silerifolius donated most. Evidences from DNA sequences and chromosome FISH indicated that the tetraploid was most probably a homoploid hybrid. Thus, a scenario of the tetraploid formation is proposed: the tetraploid was synthesized by two rounds of hybridization. The first round was between two pairs of diploids, forming two tetraploids. The second round was between the two primary tetraploids, producing the allotetraploid, R. cantoniensis, eventually.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams KL, Wendel JF (2005) Polyploidy and genome evolution in plants. Curr Opin Pl Biol 8(2):135–141

    Article  CAS  Google Scholar 

  • Barton NH (2001) The role of hybridization in evolution. Molec Ecol 10(3):551–568

    Article  CAS  Google Scholar 

  • Chapman MA, Burke JM (2007) Genetic divergence and hybrid speciation. Evolution 61(7):1773–1780

    Article  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19(1):11–15

    Google Scholar 

  • Ferguson D, Sang T (2001) Speciation through homoploid hybridization between allotetraploids in peonies (Paeonia). Proc Natl Acad Sci 98(7):3915–3919

    Article  PubMed  CAS  Google Scholar 

  • Fujishima H, Kurita M (1974) Chromosome studies in Ranunculaceae, XXVI. Variation in karyotype of Ranunculus ternatus var. glaber. Mem Ehime Univ Sci Ser B 7(3):62–68

    Google Scholar 

  • Hizume M (1993) Chromosomal localization of 5S rRNA genes in Vicia faba and Crepis capillaris. Cytologia 58(4):417–421

    CAS  Google Scholar 

  • Gompert Z, Fordyce JA, Forister ML, Shapiro AM, Nice CC (2006) Homoploid hybrid speciation in an extreme habitat. Science 314(5807):1923–1925

    Article  PubMed  CAS  Google Scholar 

  • Gross BL, Rieseberg LH (2005) The ecological genetics of homoploid hybrid speciation. J Heredity 96(3):241–252

    Article  CAS  Google Scholar 

  • Gu ZJ, Xiao H (2003) Physical mapping of the 18S–26S rDNA by fluorescent in situ hybridization (FISH) in Camellia reticulata polyploid complex (Theaceae). Pl Sci 164(2):279–285

    Article  CAS  Google Scholar 

  • Hegarty MJ, Hiscock SJ (2005) Hybrid speciation in plants: new insights from molecular studies. New Phytol 165(2):411–423

    Article  PubMed  CAS  Google Scholar 

  • Hodkinson TR, Chase MW, Takahashi C, Leitch IJ, Bennett MD, Renvoize SA (2002) The use of DNA sequencing (ITS and trnL-F), AFLP and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). Amer J Bot 89(2):279–286

    Article  CAS  Google Scholar 

  • Hörandl E, Paun O, Johansson JT, Lehneba C, Armstrong T, Chen LX, Lockhart P (2005) Phylogenetic relationships and evolutionary traits in Ranunculus s.l. (Ranunculaceae) inferred from ITS sequence analysis. Molec Phylogenet Evol 36(2):305–327

    Article  PubMed  CAS  Google Scholar 

  • Koga K, Kadono Y, Setoguchi H (2007) The genetic structure of populations of the vulnerable aquatic macrophyte Ranunculus nipponicus (Ranunculaceae). J Pl Res 120(3):167–174

    Article  Google Scholar 

  • Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220

    Article  Google Scholar 

  • Liao L, Xu LL (1997) New taxa of the genus Ranunculus from China and their karyotypes. Acta Phytotax Sin 35(1):57–62

    Google Scholar 

  • Liao L, Xu LL, Cheng Y, Fang L (1995) Studies on karyotypes of Ranunculus cantoniensis polyploid complex and its allied species. Acta Phytotax Sin 33(3):230–239

    Google Scholar 

  • Mallet J (2007) Hybrid speciation. Nature 446(7133):279–283

    Article  PubMed  CAS  Google Scholar 

  • Okada H (1981) On sexual isolation caused by karyotype variations in Ranunculus silerifolius Lév. (in Japanese). Jpn J Bot 56:41–49

    Google Scholar 

  • Okada H (1984) Polyphyletic allopolyploid origin of Ranunculus cantoniensis (4x) from R. silerifolius (2x) × R. chinensis (2x). Pl Syst Evol 148(1–2):89–102

    Google Scholar 

  • Okada H (1989) Cytogenetical changes of offsprings from the induced tetraploid hybrid between Ranunculus silerifolius (2n = 16) and R. chinensis (2n = 16) (Ranunculaceae). Pl Syst Evol 167(3–4):129–136

    Article  Google Scholar 

  • Okada H, Tamura M (1977) Chromosome variations in Ranunculus quelpaertensis and its allied species (in Japanese). Jpn J Bot 52:360–369

    Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14(9):817–818

    Article  PubMed  CAS  Google Scholar 

  • Rieseberg LH (1997) Hybrid origins of plant species. Annual Rev Ecol Syst 28:359–389

    Article  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods) Version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • Taberlet PT, Gielly L, Patou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl Molec Biol 17(5):1105–1109

    Article  CAS  Google Scholar 

  • Takahashi C (2003) Physical mapping of rDNA sequences in four karyotypes of Ranunculus silerifolius (Ranunculaceae). J Pl Res 116(4):331–336

    Article  CAS  Google Scholar 

  • Tamura M (1978) Ranunculus cantoniensis group in Japan. J Geobot 26:34–40

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewinak F, Jeanmougin F, Higgins D (1997) The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acid Res 25(24):4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Troitsky AV, Melekhovets Y, Rakhimova GM, Bobrava VK, Valiejo-Roman KM, Autonov AS (1991) Angiosperm origin and early stages of seed plant evolution deduced from rRNA sequence comparisons. J Molec Evol 32(3):253–261

    Article  PubMed  CAS  Google Scholar 

  • Wang WC (1995a) A revision of the genus Ranunculus in China (I). Bull Bot Res 15(2):137–180

    Google Scholar 

  • Wang WC (1995b) A revision of the genus Ranunculus in China (II). Bull Bot Res 15(3):275–329

    Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. Pl Molec Biol 42(1):225–249

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Zhang DM, Sang T (1998) Chromosome structural rearrangement of Paeonia brownii and P. californica revealed by fluorescence in situ hybridization. Genome 41(6):848–853

    Article  PubMed  CAS  Google Scholar 

  • Zhang DM, Sang T (1999) Physical mapping of ribosomal RNA genes in peonies (Paeonia, Paeoniaceae) by fluorescent in situ hybridization: implications for phylogeny and concerted evolution. Amer J Bot 86(5):735–740

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thanks Dr. Ge S. and Dr. Liu Z. L. for valuable suggestion in FISH experiment; and thanks State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, CAS, for support in experimental facilities. This study was supported by National Natural Science Foundation of China (NSFC30160008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Liao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, L., Xu, L., Zhang, D. et al. Multiple hybridization origin of Ranunculus cantoniensis (4x): evidence from trnL-F and ITS sequences and fluorescent in situ hybridization (FISH). Plant Syst Evol 276, 31–37 (2008). https://doi.org/10.1007/s00606-008-0083-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-008-0083-2

Keywords

Navigation