Genome size in Dahlia Cav. (Asteraceae–Coreopsideae)

  • Eva M. TemschEmail author
  • Johann Greilhuber
  • Keith R. W. Hammett
  • Brian G. Murray
Original Article


The genus Dahlia (Asteraceae–Coreopsideae) is monophyletic according to a recent DNA phylogeny (ETS and ITS of rDNA). Traditionally, the genus has been divided into sections, but these have been shown not to be monophyletic. We have studied variation in genome size (DNA C-values) in a sample of species to investigate the possible effects of secondary metabolites on flow cytometry and Feulgen densitometry, and to see whether genome size variation has any systematic or phylogenetic significance. Using a range of cultivars, secondary compounds from corollas were shown to have only minor effects on the Feulgen method; the floral pigments were found to be relatively inert and seemed to have been extracted on fixation with acetic methanol. Freshly expanded corollas showed apparent apoptotic DNA decay in epidermal cells, so need to be used with caution. Flow cytometric measurements with propidium iodide in some cultivars resulted in a very similar average genome size (2C = 8.62 pg) as compared with Feulgen densitometry (2C = 8.84 pg). Leaf cytosol of D. variabilis has a demonstrable inhibitory effect on propidium iodide fluorescence, which may explain some of the intraspecific variation of C-values observed. DNA 2C-values ranged from 3.30 pg in D. dissecta (2n = 34) to 9.62 pg in a D. variabilis cultivar (2n = 64). The D. variabilis cultivars had broadly similar C-values showing a 1.16-fold range between cultivars. Some of this variation probably results from technical variables and the extent of genuine variation is uncertain. The highest 2Cx-value occurred in one D. coccinea accession (2.47 pg, 2n = 32; x = 8). D. coccinea with 2n = 64 showed slightly reduced Cx-values compared to D. coccinea with 2n = 32. Artificially produced interspecific hybrids had C-values that corresponded closely with expectations from the measured values obtained from their parents.


Dahlia Genome size C-value Cx-value Ploidy level Feulgen densitometry Flow cytometry Flower pigments 



This study was supported by the Austrian Science Fund (FWF), project 14607B03.


  1. Baranyi M, Greilhuber J (1996) Flow cytometric and Feulgen densitometric analysis of genome size variation in Pisum. Theor Appl Genet 92:297–307CrossRefGoogle Scholar
  2. Baranyi M, Greilhuber J (1999) Genome size in Allium: in quest of reproducible data. Ann Bot 83:687–695CrossRefGoogle Scholar
  3. Bennett MD, Leitch IJ (2005) Plant DNA C-values database (release 4.0, October 2005)
  4. Bennett MD, Price HJ, Johnston JS (2008) Anthocyanin inhibits propidium iodide DNA fluorescence in Euphorbia pulcherrima: implications for genome size variation and flow cytometry. Ann Bot 101:777–790PubMedCrossRefGoogle Scholar
  5. Bureš P, Pavlíček T, Horová I, Nevo E (2004) Microgeographic genome size differentiation of the carob tree, Ceratonia siliqua, at ‘Evolution Canyon’, Israel. Ann Bot 93:529–535PubMedCrossRefGoogle Scholar
  6. de Laat AMM, Göhde W, Vogelzang (1987) Determination of ploidy of single plants and plant populations by flow cytometry. Pl Breed 99:303–307Google Scholar
  7. Dimitrova D, Ebert I, Greilhuber J, Kozhuharov S (1999) Karyotype constancy and genome size variation in Bulgarian Crepis foetida s.l. (Asteraceae). Pl Syst Evol 217:245–257CrossRefGoogle Scholar
  8. Doležel J, Bartoš J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110PubMedCrossRefGoogle Scholar
  9. Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, Obermayer R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot 82(Suppl A):17–26CrossRefGoogle Scholar
  10. Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51A:127–128CrossRefGoogle Scholar
  11. Doležel J, Greilhuber J, Suda J (2007) Estimation of nuclear DNA content in plants using flow cytometry. Nat Protocols 2:2233–2244. doi: 10.1038/nprot.2007.310 CrossRefGoogle Scholar
  12. Galbraith DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissue. Science 220:1049–1051PubMedCrossRefGoogle Scholar
  13. Gatt M, Ding H, Hammett K, Murray B (1998) Polyploidy and evolution in wild and cultivated Dahlia species. Ann Bot 81:647–656CrossRefGoogle Scholar
  14. Gatt M, Hammett K, Murray B (1999) Confirmation of ancient polyploidy in Dahlia (Asteraceae) species using genomic In situ hybridization. Ann Bot 84:39–48CrossRefGoogle Scholar
  15. Gatt MK, Hammett KRW, Murray BG (2000a) Molecular phylogeny of the genus Dahlia Cav. (Asteraceae, Heliantheae–Coreopsidinae) using sequences derived from the internal transcribed spacers of nuclear ribosomal DNA. Bot J Linn Soc 133:229–239Google Scholar
  16. Gatt M, Hammett K, Murray B (2000b) Interspecific hybridization and the analysis of meiotic chromosome pairing in Dahlia (Asteraceae–Heliantheae) species with x = 16. Pl Syst Evol 221:25–33CrossRefGoogle Scholar
  17. Giannasi DE (1975a) Flavonoid chemistry and evolution in Dahlia (Compositae). Bull Torrey Bot Club 102:404–412CrossRefGoogle Scholar
  18. Giannasi DE (1975b) The flavonoid systematics of the genus Dahlia (Compositae). Mem New York Bot Gard 26:1–125Google Scholar
  19. Greilhuber J (1986) Severely distorted Feulgen-DNA amounts in Pinus (Coniferophytina) after nonadditive fixations as a result of meristematic self-tanning with vacuole contents. Canad J Gen Cytol 28:409–415Google Scholar
  20. Greilhuber J (1988) “Self-tanning”—a new and important source of stoichiometric error in cytophotometric determination of nuclear DNA content in plants. Pl Syst Evol 158:87–96CrossRefGoogle Scholar
  21. Greilhuber J (1998) Intraspecific variation in genome size: a critical reassessment. Ann Bot 82(Suppl A):27–35CrossRefGoogle Scholar
  22. Greilhuber J (2005) Intraspecific variation in genome size in angiosperms: identifying its existence. Ann Bot 95:91–98PubMedCrossRefGoogle Scholar
  23. Greilhuber J (2008) Cytochemistry and C-values: the less-well-known world of nuclear DNA amounts. Ann Bot 101:791–804. doi: 10.1093/aob/mcm250 PubMedCrossRefGoogle Scholar
  24. Greilhuber J, Ebert I (1994) Genome size variation in Pisum sativum. Genome 37:646–655PubMedCrossRefGoogle Scholar
  25. Greilhuber J, Temsch EM (2001) Feulgen densitometry: some observations relevant to best practice in quantitative nuclear DNA content determination. Acta Bot Croat 60:285–298Google Scholar
  26. Greilhuber J, Doležel J, Lysák MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘Genome Size’ and ‘C-value’ to describe nuclear DNA contents. Ann Bot 95:255–260PubMedCrossRefGoogle Scholar
  27. Greilhuber J, Temsch EM, Loureiro J (2007) Nuclear DNA content measurement. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Analysis of genes, chromosomes and genomes. Wiley-VCH, Weinheim, pp 67–101Google Scholar
  28. Hansen HV, Hjerting JP (1996) Observations on chromosome numbers and biosystematics in Dahlia (Asteraceae, Heliantheae) with an account on the identity of D. pinnata, D. rosea, and D. coccinea. Nordic J Bot 16:445–455CrossRefGoogle Scholar
  29. Hansen HV, Sørensen PD (2003) A new species of Dahlia (Asteraceae, Coreopsideae) from Hidalgo state, Mexico. Rhodora 105:101–105Google Scholar
  30. Harborne JB, Mabry TJ, Mabry H (1975) The flavonoids. Chapman and Hall, LondonGoogle Scholar
  31. Hardie DC, Gregory TR, Hebert PDN (2002) From pixels to picograms: a beginner’s guide to genome quantification by Feulgen image analysis densitometry. J Histochem Cytochem 50:735–749PubMedGoogle Scholar
  32. Ishikawa M (1911) Zytologische Studien von Dahlien. Bot Mag Tokyo 25:1–8Google Scholar
  33. Johnson MAT, Brandham PE (1997) New chromosome numbers in petaloid monocotyledons and in other miscellaneous angiosperms. Kew Bull 52:121–138CrossRefGoogle Scholar
  34. Keeler KH, Kwankin B, Barnes PW, Galbraith DW (1987) Polyploid polymorphism in Andropogon gerardii. Genome 29:374–379Google Scholar
  35. Kornerup A, Wanscher JH (1981) Taschenlexikon der Farben. Muster-Schmidt Verlag, ZürichGoogle Scholar
  36. Lawrence WJC (1929) The genetics and cytology of Dahlia species. J Genet 21:125–159CrossRefGoogle Scholar
  37. Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc 82:651–663CrossRefGoogle Scholar
  38. Leong-Škorničková J, Šida O, Jarolímová V, Sabu M, Fér T, Trávniček P, Suda J (2007) Chromosome numbers and genome size variation in Indian species of Curcuma (Zingiberaceae). Ann Bot 100:505–526PubMedCrossRefGoogle Scholar
  39. Loureiro J, Rodriguez E, Doležel J, Santos C (2006) Flow cytometric and microscopic analysis of the effects of tannic acid on plant nuclei and estimation of DNA content. Ann Bot 98:515–527PubMedCrossRefGoogle Scholar
  40. Lysák MA, Doležel J (1998) Estimation of nuclear DNA content in Sesleria (Poaceae). Caryologia 52:123–132Google Scholar
  41. Lysák MA, Rostková A, Dixon JM, Rossi G, Doležel J (2000) Limited genome size variation in Sesleria albicans. Ann Bot 86:399–403CrossRefGoogle Scholar
  42. Mabry TJ, Markham KR, Thomas MB (1970) The systematic identification of flavonoids. Springer, New YorkGoogle Scholar
  43. Mehra PN, Renanandan P (1974) Cytological investigations on the Indian compositae. II. Astereae, Heliantheae, Helenieae and Anthemideae. Caryologia 27:255–284Google Scholar
  44. Murray BG (2005) When does intraspecific C-value variation become taxonomically significant? Ann Bot 95:119–125PubMedCrossRefGoogle Scholar
  45. Murray BG (2008) Dahlia: cytogenetics and evolution. In: Sharma AK, Sharma A (eds) Plant genome: biodiversity and evolution, vol 1E: Phanerogam–Angiosperm. Oxford and IBH Publishing, New Delhi, pp 347–364Google Scholar
  46. Nandini AV, Murray BG, O’Brien IEW, Hammett KRW (1997) Intra- and interspecific variation in genome size in Lathyrus (Leguminosae). Bot J Linn Soc 125:359–366Google Scholar
  47. Noirot M, Barre P, Duperray C, Louarn J, Hamon S (2003) Effects of caffeine and chlorogenic acid on propidium iodide accessibility to DNA: consequences on genome size evaluation in Coffee tree. Ann Bot 92:259–264PubMedCrossRefGoogle Scholar
  48. Noirot M, Barre P, Duperray C, Hamon S, de Kochko A (2005) Investigation on the causes of stoichiometric error in genome size estimation using heat experiments: consequences on data interpretation. Ann Bot 95:111–118PubMedCrossRefGoogle Scholar
  49. Price HJ, Hodnett G, Johnston JS (2000) Sunflower (Helianthus annuus) leaves contain compounds that reduce nuclear propidium iodide fluorescence. Ann Bot 86:929–934CrossRefGoogle Scholar
  50. Saar DE (2002) Dahlia neglecta (Asteraceae: Coreopsideae), a new species from Sierra Madre Oriental, Mexico. Sida 20:593–596Google Scholar
  51. Saar DE, Sørensen PD (2000) Dahlia parvibracteata (Asteraceae, Coreopsideae), a new species from Guerrero, Mexico. Novon 10:407–410CrossRefGoogle Scholar
  52. Saar DE, Sørensen PD (2005) Dahlia sublignosa (Asteraceae): a species in its own right. Sida 21:2161–2167Google Scholar
  53. Saar DE, Sørensen PD, Hjerting JP (2002) Dahlia spectabilis (Asteraceae, Coreopsideae), a new species from San Luis Potosi, Mexico. Brittonia 54:116–119CrossRefGoogle Scholar
  54. Saar DE, Sørensen PD, Hjerting JP (2003a) Dahlia campanulata and D. cuspidata (Asteraceae, Coreopsideae): two new species from Mexico. Acta Bot Mex 64:19–24Google Scholar
  55. Saar DE, Polans NO, Sørensen PD (2003b) A phylogenetic analysis of the genus Dahlia (Asteraceae) based on internal and external transcribed spacer regions of nuclear ribosomal DNA. Syst Bot 28:627–639Google Scholar
  56. Schmuths H, Meister A, Horres R, Bachmann K (2004) Genome size variation among accessions of Arabidopsis thaliana. Ann Bot 93:317–321PubMedCrossRefGoogle Scholar
  57. Sherff EE (1955) Dahlia. North American Flora II, part W. New York Botanical Garden, New York, pp 45–59Google Scholar
  58. Šmarda P, Bureš P, Horová L (2007) Random distribution pattern and non-adaptivity of genome size in a highly variable population of Festuca pallens. Ann Bot 100:141–150PubMedCrossRefGoogle Scholar
  59. Sørensen PD (1969) Revision of the genus Dahlia (Compositae, Heliantheae–Coreopsidinae). Rhodora 71:309–416Google Scholar
  60. Sørensen PD (1980) New taxa in the genus Dahlia (Asteraceae, Heliantheae–Coreopsidinae). Rhodora 82:353–360Google Scholar
  61. Strother JL, Panero JL (2001) Chromosome studies: Mexican Compositae. Amer J Bot 88:499–502CrossRefGoogle Scholar
  62. Suda J, Trávníček P (2006) Reliable DNA ploidy determination in dehydrated tissues of vascular plants by DAPI flow cytometry: new prospects for plant research. Cytometry 69A:273–280CrossRefGoogle Scholar
  63. Suda J, Krahulcová A, Trávníček P, Rosenbaumová R, Peckert T, Krahulec F (2007) Genome size variation and species relationships in Hieracium sub-genus Pilosella (Asteraceae) as inferred by flow cytometry. Ann Bot 100:1323–1335PubMedCrossRefGoogle Scholar
  64. The International Register of Dahlia Names (1969 et seq.). Royal Horticultural Society, LondonGoogle Scholar
  65. Vilhar B, Greilhuber J, Dolenc Koce J, Temsch EM, Dermastia M (2001) Plant genome size measurement with DNA image cytometry. Ann Bot 87:719–728CrossRefGoogle Scholar
  66. Walker DJ, Monino I, Correal E (2006) Genome size in Bituminaria bituminosa (L.) C·H. Stirton (Fabaceae) populations: separation of “true” differences from environmental effects on DNA determination. Env Exp Bot 55:258–265CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Eva M. Temsch
    • 1
    Email author
  • Johann Greilhuber
    • 1
  • Keith R. W. Hammett
    • 2
  • Brian G. Murray
    • 3
  1. 1.Department of Systematic and Evolutionary BotanyUniversity of ViennaViennaAustria
  2. 2.Auckland 8New Zealand
  3. 3.School of Biological SciencesThe University of AucklandAucklandNew Zealand

Personalised recommendations