Skip to main content
Log in

Flow cytometric analysis in Lagenaria siceraria (Cucurbitaceae) indicates correlation of genome size with usage types and growing elevation

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The occurrence and extent of genome size variation within species is controversially discussed and thorough analyses are rare. Given the large morphological variation in Lagenaria siceraria (bottle gourds) and its wide distribution in Africa we here analysed (1) the genome size variation within cultivars of L. siceraria, (2) the correlation between genome size and morphological traits, and (3) the geographical patterns of DNA content within the species. We measured 2C-values of 366 individuals from 117 accessions of L. siceraria (2n = 22) from Africa, America and Asia via flow cytometry with propidium iodide as DNA stain. We found that 2C-value in L. siceraria (0.683–0.776 pg/2C) is about two times lower than previously reported and varies by about 12% among all accessions. Moreover, our results indicated a clear correlation of genome size with two different seed or usage types and with growing elevations in West Africa. Within the seed types genome size varies by 6.6 and 7.5%, respectively. The genome size differences in seed types of L. siceraria might indicate differences in their evolutionary history and necessitates a re-evaluation of the phylogenetic relationships within L. siceraria while the correlation between 2C-value and the elevation of the collecting sites might indicate an adaptation of genome size to an unknown ecological parameter connected to altitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Achigan-Dako GE, Fanou N, Kouke A, Avohou H, Vodouhe SR, Ahanchede A (2006) Evaluation agronomique de trois espèces de Egusi (Cucurbitaceae) utilisées dans l’alimentation au Bénin et élaboration d’un modèle de prédiction du rendement. Biotechnol Agron Soc Environ 10:121–129

    Google Scholar 

  • Achigan-Dako GE, Vodouhe SR, Sangare A (2008) Caractérisation morphologique des cultivars locaux de Lagenaria siceraria (Cucurbitaceae) collectés au Bénin et au Togo. Belg J Bot 141(1)

  • Adjakidjè V (2006) Cucurbitaceae. In: Akoègninou A, van der Burg WJ, van der Maesen LJG, Adjakidjè V, Essou JP, Sinsin B, Yédomonhan H (eds) Flore du Bénin. Backhuys Publishers, Cotonou & Wageningen, pp 520–534

    Google Scholar 

  • Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Pl Molec Biol Rep 9:208–218

    Article  CAS  Google Scholar 

  • Barlow PW (1975) Polytene nucleus of giant hair cell of Bryonia anthers. Protoplasma 83:339–349

    Article  CAS  Google Scholar 

  • Beaulieu JM, Moles TA, Leitch IJ, Bennett MD, Dickie JB, Knight CA (2007) Correlated evolution of genome size and seed mass. New Phytol 173:422–437

    Article  PubMed  Google Scholar 

  • Beevy SS, Kuriachan P (1996) Chromosome numbers of south Indian Cucurbitaceae and a note on the cytological evolution in the family. J Cytol Genet 31:65–71

    Google Scholar 

  • Bennett MD (1972) Nuclear DNA content and minimum generation time in herbaceous plants. Proc Roy Soc Lond B 181:109–135

    CAS  Google Scholar 

  • Bennett MD (1973) Nuclear characters in plants. In: Basic mechanisms in plant morphogenesis. Brookhaven Sym Biol 25:344–366

  • Bennett MD (1985) Intraspecific variation in DNA amount and the nucleotypic dimension in plant genetics. In: Freeling M (ed) Plant genetics, UCLA symposium on molecular and cellular biology, Alan R Liss, New York, pp 283–302

  • Bennett MD (1998) Plant genome values: How much do we know? Proc Natl Acad Sci USA 95:2011–2016

    Article  PubMed  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (1995) Nuclear DNA amounts in angiosperms. Ann Bot 76:113–176

    Article  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2005a) Nuclear DNA amounts in angiosperms—progress, problems and prospects. Ann Bot 95:45–90

    Article  PubMed  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2005b) Plant genome size research: a field in focus. Ann Bot 95:1–6

    Article  PubMed  CAS  Google Scholar 

  • Burkill HM (1985) The useful plants of West Tropical Africa, vol 1, 2nd edn. Families A-D. Royal Botanical Gardens, Kew

  • Caceres ME, De Pace C, Scarascia Mugnozza GT, Kotsonis P, Ceccarelli M, Cionini PG (1998) Genome size variation within Dasypyrum villosum: correlations with chromosomal traits, environmental factors and plant phenotypic characteristics and behaviour in reproduction. Theor Appl Genet 96:559–567

    Article  Google Scholar 

  • Chattopadhyay D, Sharma AK (1991) Chromosome studies and nuclear DNA in relation to sex difference and plant habit in two species of Cucurbitaceae. Cytologia 56:409–417

    Google Scholar 

  • Crawley JM (2007) The R book. Wiley, West Sussex

    Google Scholar 

  • Decker-Walters D, Staub J, Lopez-Sese A, Nakata E (2001) Diversity in landraces and cultivars of bottle gourd (Lagenaria siceraria; Cucurbitaceae) as assessed by random amplified polymorphic DNA. Genet Resour Crop Evol 48:369–380

    Article  Google Scholar 

  • Decker-Walters D, Wilkins-Ellert M, Chung S-M, Staub EJ (2004) Discovery and genetic assessment of wild bottle gourd [Lagenaria siceraria (Mol.) Standley; Cucurbitaceae] from Zimbabwe. Econ Bot 58:501–508

    Article  Google Scholar 

  • Dolezel J, Greilhuber J, Lucretti S, Meister A, Lysak MA, Nardi L, Obermayer R (1998) Plant genome size estimation by flow cytometry: inter-laboratory comparison. Ann Bot 82 (suppl A):17–26

    Google Scholar 

  • Dolezel J, Bartoš J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110

    Article  PubMed  CAS  Google Scholar 

  • Dolezel J, Greilhuber J, Suda J (2007) Flow cytometry with plants: an overview. In: Dolezel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley-VCH, Weinheim, pp 41–65

    Chapter  Google Scholar 

  • Eilam T, Anikster Y, Millet E, Manisterski J, Sagi-Assif O, Feldman M (2007) Genome size and genome evolution in diploid Triticeae species. Genome 50:1029–1035

    Article  PubMed  CAS  Google Scholar 

  • Erickson LD, Smith DB, Clarke CA, Sandweiss HD, Tuross N (2005) An Asian origin for a 10, 000-year-old domesticated plant in the Americas. Proc Natl Acad Sci USA 102:18315–18320

    Article  PubMed  CAS  Google Scholar 

  • Galbraith DW, Harkins RK, Maddox MJ, Ayres MN, Sharma PD, Firoozabady E (1983) Rapid flow cytometry analysis of the cell cycle in intact plant tissues. Science 220:1049–1051

    Article  PubMed  CAS  Google Scholar 

  • Graham MJ, Nickell CD, Rayburn AL (1994) Relationship between genome size and maturity group in soybean. Theor Appl Genet 88:429–432

    Article  Google Scholar 

  • Greilhuber J (1998) Intraspecific variation in genome size: a critical reassessment. Ann Bot 82 (suppl A):27–35

    Google Scholar 

  • Greilhuber J (2005) Intraspecific variation in genome size in angiosperms: identifying its existence. Ann Bot 95:91–98

    Article  PubMed  CAS  Google Scholar 

  • Greilhuber J, Temsch EM, Loureiro JCM (2007) Nuclear DNA content measurement. In: Dolezel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Wiley-VCH, Weinheim, pp 67–101

    Chapter  Google Scholar 

  • Hanson L, Brown RL, Boyd A, Johnson MAT, Bennett MD (2003) First nuclear DNA C-values for 28 Angiosperm genera. Ann Bot 91:31–38

    Article  PubMed  CAS  Google Scholar 

  • Heiser CB (1979) The gourd book. University of Oklahoma Press, Norman

    Google Scholar 

  • Hill T, Lewicki P (2006) Statistics: methods and applications. A comprehensive reference for science, industry, and data mining, 1st edn. StatSoft, Tulsa

    Google Scholar 

  • Ingle J, Timmis JN, Sinclair J (1975) The relationship between satellite deoxyribonucleic acid, ribosomal ribonucleic acid gene redundancy and genome size in plants. Pl Physiol 55:496–501

    Article  CAS  Google Scholar 

  • Jakob SS, Meister A, Blattner FR (2004) The considerable genome size variation of Hordeum species (Poaceae) is linked to phylogeny, life form, ecology, and speciation rates. Molec Biol Evol 21:860–869

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey C (1967) On the classification of the Cucurbitaceae. Kew Bull 20:417–426

    Article  Google Scholar 

  • Jeffrey C (1995) Cucurbitaceae. In: Edwards S, Tadesse M, Hedberg I (eds) Flora of Ethiopia and Eritrea. Canellaceae to Euphorbiaceae, vol 2, Part 2. The National Herbarium/Uppsala University, pp 17–59

  • Jeffrey C (2005) A new system of Cucurbitaceae. Bot Zhurn 90:332–335

    Google Scholar 

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607

    Article  PubMed  CAS  Google Scholar 

  • Keraudren M (1967) Cucurbitaceae. In: Raynal J (ed) Flore du Cameroun, vol 6. Museum National d’Histoire Naturelle, Paris, pp 154–185

    Google Scholar 

  • Knight CA, Ackerly DD (2002) Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecol Lett 5:66–76

    Article  Google Scholar 

  • Knight CA, Molinari NA, Petrov DA (2005) The large genome constraint hypothesis: evolution, ecology and phenotype. Ann Bot 95:177–190

    Article  PubMed  CAS  Google Scholar 

  • Kron P, Suda J, Husband BC (2007) Applications of flow cytometry to evolutionary and population biology. Annual Rev Ecol Evol Syst 38:847–876

    Article  Google Scholar 

  • Lia VV, Confalonieri AV, Poggio L (2007) B chromosome polymorphism in maize landraces: adaptive vs demographic hypothesis of clinal variation. Genetics 177:895–904

    Article  PubMed  CAS  Google Scholar 

  • Leitch IJ, Bennett MD (2007) Genome size and its uses: the impact of flow cytometry. In: Dolezel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. WILEY-VCH, Weinheim, pp 153–176

    Chapter  Google Scholar 

  • Lowe A, Harris S, Ashton P (2004) Ecological genetics. Design, analysis and application. Blackwell Publishing, TJ International, Cornwall

    Google Scholar 

  • Mahelka V, Suda J, Jarolímová V, Trávnícek P, Krahulec F (2005) Genome size discriminates between closely related taxa Elytrigia repens and E. intermdia (Poaceae: Triticeae) and their hybrid. Folia Geobot 40:367–384

    Article  Google Scholar 

  • McLeish S, Sunderland N (1961) Measurements of DNA in higher plants by feulgen photometry and chemical methods. Exp Cell Res 24:527–540

    Article  CAS  Google Scholar 

  • Meagher TR, Costish DE (1996) Nuclear DNA content and floral evolution in Silene latifolia. Proc Roy Soc Lond B 263:1455–1460

    Article  Google Scholar 

  • Meagher TR, Gillies ACM, Costish DE (2005) Genome size, quantitative genetics and the genome basis for flower size evolution in Silene latifolia. Ann Bot 95:247–254

    Article  PubMed  CAS  Google Scholar 

  • Morimoto Y, Mvere B (2004) Lagenaria siceraria. In: Grubben GJH, Denton OA (eds) Vegetables. Plant resources of Tropical Africa 2. Backhuys Publishers/CTA, Wageningen/Leiden, pp 353–358

    Google Scholar 

  • Morimoto Y, Maundu P, Fujimaki H, Morishima H (2005) Diversity of the white-flowered gourd (Lagenaria siceraria) and its relatives in Kenya: fruit and seed morphology. Genet Resour Crop Evol 52:737–747

    Article  Google Scholar 

  • Murray GB (2005) When does intraspecific C-value variation become taxonomically significant? Ann Bot 95:119–125

    Article  PubMed  CAS  Google Scholar 

  • Norman JC (1992) Tropical vegetable crops Cucurbitaceous crops. Arthur Stockwell, Great Britain, pp 107–119

    Google Scholar 

  • Obermayer R, Greilhuber J (2005) Does genome size in Dasypyrum villosum vary with fruit colour? Heredity 95:91–95

    Article  PubMed  CAS  Google Scholar 

  • Ohri D (1998) Genome size variation and plant systematics. Ann Bot 82 (suppl A) 75–83

    Google Scholar 

  • Poggio L, Rosato M, Chiavarino AM, Naranjo AC (1998) Genome size and environmental correlations in Maize (Zea mays spp. mays, Poaceae). Ann Bot 82:107–115

    Article  Google Scholar 

  • Price HJ, Chambers KL, Bachmann K (1981) Genome size variation in diploid Microseris bigelovii (Asteraceae). Bot Gaz 142:156–159

    Article  Google Scholar 

  • Ramachandran C, Narayan RKJ (1985) Chromosomal DNA variation in Cucumis. Theor Appl Genet 69:497–502

    Article  CAS  Google Scholar 

  • Rayburn AL, Auger JA, Benzinger ES, Hepburn AG (1989) Detection of intraspecific DNA content variation in Zea mays L. by flow cytometry. J Exp Bot 40:1179–1183

    Article  CAS  Google Scholar 

  • R Development Core Team (2007) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org

  • Rosato M, Chiavarino AM, Naranjo CA, Hernandez CJ, Poggio L (1998) Genome size and numerical polymorphism for the B chromosome in races of maize (Zea mays spp. mays, Poaceae). Amer J Bot 85:168–174

    Article  Google Scholar 

  • Salzmann U, Hoelzmann P (2005) The Dahomey Gap: an abrupt climatically induced rain forest fragmentation in West Africa during the late Holocene. The Holocene 15:190–199

    Article  Google Scholar 

  • Schippers RR (2004) Légumes Africains Indigènes: présentation des espèces cultivées. Cucurbitaceae. Margraf Publishers, CTA, 113–182

  • Schmidt-Lebuhn AN, Fuchs J, Kessler M (2008) Flow cytometric measurements do not reveal different ploidy levels in Minthostachys (Lamiaceae). Pl Syst Evol 271:123–128

    Article  Google Scholar 

  • Schmuths H, Meister A, Horres R, Bachmann K (2004) Genome size variation among accessions of Arabidopsis thaliana. Ann Bot 93:317–321

    Article  PubMed  CAS  Google Scholar 

  • Šmarda P, Bureš P (2006) Intraspecific DNA content variability in Festuca pallens on different geographical scales and ploidy levels. Ann Bot 98:665–678

    Article  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. W·H Freeman and Company, New York

    Google Scholar 

  • SPSS for Windows, Rel. 12.0.0. 2003. SPSS, Chicago

  • Warton DI, Wright IJ, Falster DS, Westoby M (2006) Bivariate line fitting methods for allometry. Biol Rev 81:259–291

    Article  PubMed  Google Scholar 

  • White F (1983) The vegetation of Africa. A descriptive memoir to accompany the Unesco AETFAT/UNSO vegetation map of Africa. UNESCO, Paris

    Google Scholar 

  • Zoro Bi I, Koffi KK, Dje Y (2003) Caractérisation botanique et agronomique de trois espèces de cucurbits consommées en sauce en Afrique de l’Ouest: Citrullus sp., Cucumeropsis manii, Lagenaria siceraria. Biotechnol Agron Soc Environ 7:187–199

    Google Scholar 

Download references

Acknowledgments

E.G.A-D. is supported by the Deutscher Akademischer Austauschdienst (DAAD). We acknowledge funding of this work by the Deutsche Forschungsgemeinschaft (DFG) to F.R.B and the International Foundation for Science (IFS)’s grant T/3709 to E.G.A.-D. We thank the Genbank of the IPK for providing accessions from Asia and America, Raymond S. Vodouhè for facilitating collecting missions, Christina Koch (IPK) for greenhouse sample management and help with the laboratory works and O.G. Gaoue for contribution to statistical analysis with R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enoch G. Achigan-Dako.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1S (DOC 113 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Achigan-Dako, E.G., Fuchs, J., Ahanchede, A. et al. Flow cytometric analysis in Lagenaria siceraria (Cucurbitaceae) indicates correlation of genome size with usage types and growing elevation. Plant Syst Evol 276, 9–19 (2008). https://doi.org/10.1007/s00606-008-0075-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-008-0075-2

Keywords

Navigation