Skip to main content
Log in

Hybridization beyond the F1 generation between the New Zealand endemic everlastings Anaphalioides bellidioides and Ewartia sinclairii (Asteraceae, Gnaphalieae)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The Raoulia alliance is remarkable for the occurrence of rare wild hybrids between five of its six genera. In this study, the potential for hybridization beyond the F1 generation between Anaphalioides bellidioides and Ewartia sinclairii was investigated. Three putative hybrids were raised from open-pollinated seeds collected from a site where wild A. bellidioides, E. sinclairii and their intergeneric hybrids occur. Multivariate analysis of morphological data strongly indicated that two of the seed-raised hybrids were backcrosses to A. bellidioides; the paternal parent of the third plant, raised from a seed collected from a wild hybrid, was equivocal. Artificial crosses and evaluation of seed germinability demonstrated that wild A. bellidioides × E. sinclairii are partially fertile and capable of giving rise to viable backcrosses and advanced-generation hybrids. Possible reasons for the apparent rarity of wild hybrids between A. bellidioides and E. sinclairii are discussed briefly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander MP (1980) A versatile stain for pollen, fungi, yeast and bacteria. Stain Tech 55:13–18

    CAS  Google Scholar 

  • Allan HH (1961) Flora of New Zealand, vol 1. Government Printer, Wellington

    Google Scholar 

  • Anderson E, Hubricht L (1938) Hybridization in Tradescantia. III. The evidence for introgressive hybridization. Am J Bot 25:396–402

    Article  Google Scholar 

  • Arnold ML (2004) Transfer and origin of adaptations through natural hybridization: were Anderson and Stebbins right? Plant Cell 16:562–570

    Article  PubMed  CAS  Google Scholar 

  • Arnold ML, Kentner EK, Johnston JA, Cornman S, Bouck AC (2001) Natural hybridization and fitness. Taxon 50:93–104

    Article  Google Scholar 

  • Arnold ML, Wesselingh RA (2000) Natural hybridization, Louisiana irises and evolutionary process. In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO Publishing, Melbourne, pp 286–294

    Google Scholar 

  • Barrier M, Baldwin BG, Robichaux RH, Purugganan MD (1999) Interspecific hybrid ancestry of a plant adaptive radiation: allopolyploidy of the Hawaiian silversword alliance (Asteraceae) inferred from floral homeotic gene duplications. Mol Biol Evol 16:1105–1113

    PubMed  CAS  Google Scholar 

  • Barton NH (2001) The role of hybridization in evolution. Mol Ecol 10:551–568

    Article  PubMed  CAS  Google Scholar 

  • Beuzenberg EJ, Hair JB (1984) Contributions to a chromosome atlas of the New Zealand flora—27 Compositae. NZ J Bot 22:353–356

    Google Scholar 

  • Breitwieser I, Glenny DS, Thorne A, Wagstaff SJ (1999) Phylogenetic relationships in Australasian Gnaphalieae (Compositae) inferred from ITS sequences. NZ J Bot 37:399–412

    Google Scholar 

  • Breitwieser I, Ward JM (2003) Phylogenetic relationships and character evolution in New Zealand and selected Australian Gnaphalieae (Compositae) inferred from morphological and anatomical data. Bot J Linn Soc 141:183–203

    Article  Google Scholar 

  • Brysting AK, Fay MF, Leitch IJ, Aiken SG (2004) One or more species in the arctic grass genus Dupontia?—a contribution to the Panarctic flora project. Taxon 53:365–382

    Article  Google Scholar 

  • Burke JM, Arnold ML (2001) Genetics and the fitness of hybrids. Annu Rev Genet 35:31–52

    Article  PubMed  CAS  Google Scholar 

  • Campbell DR, Waser NM, Meléndez-Ackerman EJ (1997) Analyzing pollinator-mediated selection in a plant hybrid zone: hummingbird visitation patterns on three spatial scales. Am Nat 149:295–315

    Article  Google Scholar 

  • Carr GD (1995) A fully fertile intergeneric hybrid derivative from Argyroxiphium sandwicense ssp. macrocephalum × Dubautia menziesii (Asteraceae) and its relevance to plant evolution in the Hawaiian islands. Am J Bot 82:1574–1581

    Article  Google Scholar 

  • Carr GD (2003) Hybridization in Madiinae. In: Carlquist S, Baldwin BG, Carr GD (eds) Tarweeds and silverswords: evolution of the Madiinae (Asteraceae). Missouri Botanical Garden Press, St Louis, pp 79–104

    Google Scholar 

  • Clausen J (1951) Stages in the evolution of plant species. Cornell University Press, Ithaca

    Google Scholar 

  • Crisp P, Jones BMG (1978) Hybridization of Senecio squalidus and S. viscosus and introgression of genes from diploid into tetraploid Senecio species. Ann Bot 42:937–944

    Google Scholar 

  • Dafni A, Firmage D (2000) Pollen viability and longevity: practical, ecological and evolutionary implications. Plant Syst Evol 222:113–132

    Article  Google Scholar 

  • Edmands S (2002) Does parental divergence predict reproductive compatibility? Trends Ecol Evol 17:520–527

    Article  Google Scholar 

  • Fenster CB, Galloway LF (2000) Inbreeding and outbreeding depression in natural populations of Chamaecrista fasciculata (Fabaceae). Conserv Biol 14:1406–1412

    Article  Google Scholar 

  • Gottlieb LD (1971) Evolutionary relationships in the outcrossing diploid annual species of Stephanomeria (Compositae). Evolution 25:312–329

    Article  Google Scholar 

  • Hair JB, Beuzenberg EJ (1968) Contributions to a chromosome atlas of the New Zealand floras—11. Miscellaneous families. NZ J Bot 6:19–24

    Google Scholar 

  • Heiser CB Jr, Smith DM, Clevenger SB, Martin WC Jr (1969) The North American sunflowers (Helianthus). Mem Torrey Bot Club 22:1–218

    Google Scholar 

  • Hoekstra FA, Bruinsma J (1975) Viability of Compositae pollen: germination in vitro and influences of climatic conditions during dehiscence. Z Pflanzenphys 76:36–43

    Google Scholar 

  • Insightful (2001) S-Plus 6 for Windows user’s guide. Insightful Corporation, Seattle

    Google Scholar 

  • Kyhos DW, Carr GD, Baldwin BG (1990) Biodiversity and cytogenetics of the tarweeds (Asteraceae: Heliantheae–Madiinae). Ann Mo Bot Gard 77:84–95

    Article  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland

    Google Scholar 

  • Mayr E (1992) A local flora and the biological species concept. Am J Bot 79:232–238

    Article  Google Scholar 

  • McKenzie RJ (2001) Intergeneric hybridisation in New Zealand Gnaphalieae (Compositae). Unpublished PhD thesis, University of Canterbury

  • McKenzie RJ, Ward JM, Lovis JD, Breitwieser I (2004) Morphological evidence for natural hybridization in the New Zealand Gnaphalieae (Compositae): Anaphalioides bellidioides × Ewartia sinclairii. Bot J Linn Soc 145:59–75

    Article  Google Scholar 

  • McLachlan GJ (1992) Discriminant analysis and statistical pattern recognition. John Wiley, New York

    Google Scholar 

  • Price MV, Waser NM (1979) Pollen dispersal and optimal outcrossing in Delphinium nelsoni. Nature 277:294–297

    Article  Google Scholar 

  • Primack RB (1983) Insect pollination in the New Zealand mountain flora. NZ J Bot 21:317–333

    Google Scholar 

  • Rieseberg LH (1997) Hybrid origins of plant species. Annu Rev Ecol Syst 28:359–389

    Article  Google Scholar 

  • Rieseberg LH, Archer MA, Wayne RK (1999a) Transgressive segregation, adaptation and speciation. Heredity 83:363–372

    Article  PubMed  Google Scholar 

  • Rieseberg LH, Desrochers AM, Youn SJ (1995) Interspecific pollen competition as a reproductive barrier between sympatric species of Helianthus (Asteraceae). Am J Bot 82:515–519

    Article  Google Scholar 

  • Rieseberg LH, Ellstrand NC (1993) What can molecular and morphological markers tell us about plant hybridization? Crit Rev Plant Sci 12:213–241

    Article  CAS  Google Scholar 

  • Rieseberg LH, Linder CR (1999) Hybrid classification: insights from genetic map-based studies of experimental hybrids. Ecology 80:361–370

    Article  Google Scholar 

  • Rieseberg LH, Raymond O, Rosenthal DM, Lai Z, Livingstone K, Nakazato T, Durphy JL, Schwarzbach AE, Donovan LA, Lexer C (2003) Major ecological transitions in wild sunflowers facilitated by hybridization. Science 301:1211–1216

    Article  PubMed  CAS  Google Scholar 

  • Rieseberg LH, Wendel JF (1993) Introgression and its consequences in plants. In: Harrison R G (ed) Hybrid zones and the evolutionary process. Oxford University Press, Oxford, pp 70–109

    Google Scholar 

  • Rieseberg LH, Whitton J, Gardner K (1999b) Hybrid zones and the genetic architecture of a barrier to gene flow between two sunflower species. Genetics 152:713–727

    PubMed  CAS  Google Scholar 

  • Seehausen O (2004) Hybridization and adaptive radiation. Trends Ecol Evol 19:198–207

    Article  PubMed  Google Scholar 

  • Smissen RD, Breitwieser I, Ward JM (2004) Phylogenetic implications of trans-specific chloroplast DNA sequence polymorphism in New Zealand Gnaphalieae (Asteraceae). Plant Syst Evol 249:37–53

    Article  CAS  Google Scholar 

  • Smissen RD, Breitwieser I, Ward JM (2007) Genetic characterization of hybridization between the New Zealand everlastings Helichrysum lanceolatum and Anaphalioides bellidioides (Asteraceae: Gnaphalieae). Bot J Linn Soc 154:90–98

    Article  Google Scholar 

  • Smissen RD, Breitwieser I, Ward JM, McLenachan PA, Lockhart PJ (2003) Use of ISSR profiles and ITS-sequences to study the biogeography of alpine cushion plants in the genus Raoulia (Asteraceae). Plant Syst Evol 239:79–94

    Article  Google Scholar 

  • Smith EB (1968) Pollen competition and relatedness in Haplopappus section Isopappus. Bot Gaz 129:371–373

    Article  Google Scholar 

  • Smith EB (1970) Pollen competition and relatedness in Haplopappus section Isopappus (Compositae) II. Am J Bot 57:874–880

    Article  Google Scholar 

  • Stace CA (1993) The importance of rare events in polyploid evolution. In: Lees DR, Edwards D (eds) Evolutionary patterns and processes. Academic Press, London, pp 157–169

    Google Scholar 

  • Tara M (1977) Cytogenetic studies on natural intergeneric hybridization in Aster alliances III. Experimental confirmation of the hybrid origin of Aster ageratoides subsp. ovatus. Bot Mag Tokyo 90:253–258

    Article  Google Scholar 

  • Templeton AR (1986) Coadaptation and outbreeding depression. In: Soulé ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland, pp 105–116

    Google Scholar 

  • Wagner WH Jr (1970) Biosystematics and evolutionary noise. Taxon 19:146–151

    Article  Google Scholar 

  • Wallace RS, Jansen RK (1995) DNA evidence for multiple origins of intergeneric allopolyploids in annual Microseris (Asteraceae). Plant Syst Evol 198:253–265

    Article  CAS  Google Scholar 

  • Ward JM (1997) Raoulia and its hybrids. In: Sheppard JS (ed) Southern Alpines ‘96. Southern Alpines, Christchurch, pp 40–44

    Google Scholar 

  • Wesselingh RA, Arnold ML (2000) Pollinator behaviour and the evolution of Louisiana iris hybrid zones. J Evol Biol 13:171–180

    Article  Google Scholar 

  • Wilton AD (1997) An evolutionary investigation of the New Zealand Inuleae (Compositae): stem anatomy and flowering phenology. Unpublished PhD thesis, University of Canterbury

Download references

Acknowledgments

The financial support of the Miss E. L. Hellaby Indigenous Grasslands Research Trust and a University of Canterbury Doctoral Scholarship (to R. J. McK.) is gratefully acknowledged. The authors thank the Department of Conservation and Don and Anne Reid, formerly of Molesworth Station, for access to the collection site; Ashley Sparrow for advice on data analysis; Aaron Wilton for use of the Phenetic S-Plus library; Rainer Vogt and Grant Bawden for field work assistance; Linda Newstrom-Lloyd for invaluable discussions; two anonymous reviewers for helpful comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. McKenzie.

Appendix

Appendix

Morphological characters accessed and coding of character states for calculation of dissimilarities. 1, growth form: 0 = mat-forming to sprawling; 1 = subshrubby to erect; 2, rooting pattern: 0 = taprooted; 1 = adventitious roots produced along entire stem; 3, nonflowering shoot orientation: 0 = prostrate or decumbent; 1 = erect; 4, leaf length (mm); 5, leaf lamina width (mm); 6, leaf length: leaf lamina width ratio; 7, shape of lamina base: 0 = narrows abruptly; 1 = tapering; 8, stem enclosure by the leaf petiole extensions: 0 = ≤ 50% of stem enclosed; 1 = > 50 % of the stem enclosed; 9, mucro length (mm); 10, mucro orientation: 0 = recurved and pointing towards leaf axil (lamina/mucro angle < 90°); 0.5 = usually upturned (angle 90–180°); 1 = plane with leaf axis (angle ± 180°); 11, leaf indumentum density on adaxial lamina surface: 0 = dense; 1 = moderate; 2 = sparse to glabrous; 12, type B glandular trichomes on margins and adaxial surface of leaf: 0 = absent; 1 = present; 13, density of type B glandular trichomes on adaxial lamina surface and leaf margins: 0 = common; 0.5 = sparse or rare; 1 = absent; 14, terminal cell shape of type A glandular trichomes: 0 = oval; 0.5 = oblong-oval; 1 = oblong; 15, terminal cell length of type A glandular trichomes: 0 = 12–18 μm; 0.33 = 14–23 μm; 0.67 = 19–27 μm; 1 = 28–35 μm; 16, number of basal cells in clothing trichomes: 0 = always one cell; 1 = one or two cells; 17, base of terminal cell of clothing trichomes: 0 = swollen; 1 = not swollen; 18, lateral nerves raised on abaxial leaf surface: 0 = absent; 1 = present; 19, cuticle thickness: 0 = thicker on adaxial lamina surface; 1 = equal thickness on both lamina surfaces; 20, epidermis thickness: 0 = thicker on adaxial lamina surface; 1 = equal thickness on both lamina surfaces; 21, stomata level: 0 = level with epidermis; 0.5 = guard cells raised; 1 = guard cells and adjacent cells raised; 22, palisade chlorenchyma in midrib: 0 = absent; 1 = present; 23, abaxial collenchyma in midrib and lateral ribs: 0 = absent; 1 = present; 24, spongy mesophyll differentiation: 0 = well differentiated; 1 = slightly differentiated; 25, number of capitula per inflorescence; 26, capitulum length (mm); 27, capitulum width at midpoint (mm); 28, number of female florets per capitulum; 29, number of hermaphrodite florets per capitulu; 30, total number of florets per capitulum; 31, female floret: total floret ratio; 32, receptacle height (mm); 33, receptacle diameter (mm); 34, receptacle type: 0 = alveolate, foveolate or fimbrillate; 1 = scrobiculate; 35, inner involucral bract length (mm); 36, inner involucral bract, lamina length (mm); 37, shape of lamina tip of inner involucral bracts: 0 = acute to obtuse; 0.5 = obtuse to rounded; 1 = rounded; 38, reddish pigmentation in lamina/stereome gap of outer involucral bract: 0 = absent; 1 = present; 39, hyaline margins on stereome of inner involucral bract: 0 = absent; 1 = present; 40, corolla tube length in female florets (mm); 41, corolla tube length in hermaphrodite florets (mm); 42, upper corolla tube crimson at anthesis: 0 = absent; 1 = present; 43, corolla lobe colour at anthesis: 0 = green; 0.5 = greenish-white; 1 = white; 44, corolla lobes develop crimson pigmentation with age: 0 = absent; 1 = present; 45, corolla lobes recurved: 0 = erect only; 1 = at least some lobes partly patent or recurved; 46, crimson pigmentation in anthers: 0 = dark crimson; 0.5 = pale reddish; 1 = absent; 47, pollen colour: 0 = yellow; 0.5 = pale yellow; 1 = white; 48, style arm colour: 0 = white; 1 = pale green to greenish-white; 49, pappus hair length in female florets (mm); 50, female floret pappus hairs, number of apical cells: 0 = one or two; 1 = one to five; 51, female floret pappus hairs distinctly dimorphic: 0 = absent; 1 = present; 52, female floret pappus hairs, apical cells distinctly protruding: 0 = absent; 1 = present; 53, pappus hair length in hermaphrodite florets (mm); 54, hermaphrodite floret pappus hairs, number of apical cells: 0 = one or two; 0.5 = two to five; 55, type of wall thickening in pappus hair apical cells: 0 = reticulate or irregular; 1 = uniformly thickened; 56, density of basal cilia on pappus hairs: 0 = sparse; 1 = moderate to dense; 57, length of basal cilia on pappus hairs: 0 = up to 12 μm long; 0.5 = up to 25 μm long; 1 = maximum > 25 μm long; 58, angle of basal cilia on pappus hairs: 0 = ascending only; 1 = ascending, spreading or recurved; 59, ovary epidermal cell shape: 0 = rounded; 1 = smooth; 60, twin hairs on ovary of female florets; 0 = absent; 1 = present; 61, twin hairs on ovary of hermaphrodite florets: 0 = absent; 1 = present; 62, multicellular biseriate trichomes on ovary of female florets: 0 = absent; 1 = present.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKenzie, R.J., Ward, J.M. & Breitwieser, I. Hybridization beyond the F1 generation between the New Zealand endemic everlastings Anaphalioides bellidioides and Ewartia sinclairii (Asteraceae, Gnaphalieae). Plant Syst Evol 273, 13–24 (2008). https://doi.org/10.1007/s00606-008-0004-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-008-0004-4

Keywords

Navigation