Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Hybridisation processes in sympatric populations of pines Pinus sylvestris L., P. mugo Turra and P. uliginosa Neumann

  • 159 Accesses

  • 43 Citations


Natural hybridisation was postulated between the closely related pine species Pinus sylvestris and the P. mugo complex, however no clear evidence on propagation of mature hybrids in nature has been documented so far. To test the hybridisation hypothesis we applied chloroplast DNA (cpDNA) markers and isozymes in the analyses of 300 individuals representing the variety of morphological forms in the sympatric populations of P. sylvestris, P. mugo and P. uliginosa at the peat bog complex in the Sudety Mts., Poland. Additionally, the haplotypes of paternally inherited cpDNA of 149 open pollinated progeny derived from seeds were compared to the haplotypes of parental trees to access the intensity and direction of contemporary hybridisation. The morphologically highly variable polycormic (multi-stemmed) hybrids between P. mugo and P. uliginosa were identified. The second group of hybrids was found among the monocormic (single-stemmed) P. sylvestris-like individuals carrying the cpDNA from P. mugo complex. Hybrids of P. sylvestris as a pollen donor and P. mugo or P. uliginosa as a mother were not found, either in the group of examined trees, or among the open pollinated progeny. The results indicate that numerous hybrids can exist in the sympatric population of the species studied and that gene flow can successfully proceed from P. mugo complex to P. sylvestris. Hybridisation and ecological selection seems to play a significant role in diversification and evolution of the investigated species.

This is a preview of subscription content, log in to check access.


  1. Arnold ML (1997). Natural hybridisation and evolution. Oxford University Press, New York, Oxford, 3–10

  2. Arnold ML, Bilger MR, Burke JR, Hempel AL and Williams JH (1999). Natural hybridisation: how low can you go and still be important?. Ecology 80(2): 371–381

  3. Bobowicz MA (1990) Pinus mugo Turra × Pinus sylvestris L. hybrids from Bór na Czerwonem reservation in Kotlina Nowotarska (in Polish). Wyd. Nauk. UAM, Poznań

  4. Boratyńska K, Boratyński A and Lewandowski A (2003). Morphology of Pinus uliginosa (Pinaceae) needles from populations exposed to and isolated from direct influence of Pinus sylvestris. Bot J Linn Soc 142: 83–91

  5. Boratyński A, Boratyńska K, Lewandowski A, Gołąb Z and Kiciński P (2003). Evidence of the possibility of natural reciprocal crosses between Pinus sylvestris and P. uliginosa based on the phenology of reproductive organs. Flora 198: 1227–1239

  6. Bucci G, Anzidei M, Madaghiele A and Vendramin GG (1998). Detection of haplotypic variation and natural hybridisation in halepensis-complex pine species using chloroplast simple sequence repeat (SSR) markers. Molec Ecol 7: 1633–1643

  7. Cheddadi R, Vendramin GG, Litt T, Francois L, Kageyama M, Lorentz S, Laurent JM, de Beaulieu JL, Sadori L, Jost A, Lunt D and Beaulieu JL (2006). Imprints of glacial refugia in the modern genetic diversity of Pinus sylvestris. Glob Ecol Biog 15: 271–282

  8. Chen JW, Tauer CG, Bai GH, Huang YH, Payton ME and Holley AG (2004). Bidirectional introgression between Pinus taeda and Pinus echinata: evidence from morphological and molecular data. Canad J For Res 34(12): 2508–2516

  9. Christensen K I (1987a). Taxonomic revision of the Pinus mugo complex and P. × rhaetica (P. mugo × P. sylvestris) (Pinaceae). Nord J Bot 7(4): 383–408

  10. Christensen KI (1987b). A morphometric study of the Pinus mugo Turra complex and its natural hybridisation with P. sylvestris L. (Pinaceae). Feddes Repert 98: 623–635

  11. Christensen K and Dar GH (1997). A morphometric analysis of spontaneous and artificial hybrids of Pinus mugo × P. sylvestris (Pinaceae). Nord J Bot 17: 77–86

  12. Critchfield WB, Little EL (1971) Geographic distribution of the pines of the world. US Department of Agriculture Forest Service, Miscellaneous Publication 991, Washington

  13. Dungey HS (2001). Pine hybrids – a review of their use, performance and genetics. For Ecol Manage 148: 243–258

  14. Filppula S, Szmidt AE and Savolainen O (1992). Genetic comparison between Pinus sylvestris and P. mugo using isozymes and chloroplast DNA. Nord J Bot 12: 381–386

  15. Gross BL and Rieseberg LH (2005). The ecological genetics of homoploid hybrid speciation. J Heredity 96(3): 241–252

  16. Harrison RG (1990). Hybrid zones: windows on evolutionary process. Oxford Surv Evol Biol 7: 69–128

  17. Kormutak A, Ostrolucka M, Vookova B, Pretova A and Feckova M (2005). Artificial hybridisation of Pinus sylvestris L. and Pinus mugo Turra. Acta Biol Crac Ser Bot 47(1): 129–134

  18. Lai Z, Nakazato T, Salmaso M, Burke JM, Tang S, Knapp SJ and Rieseberg LH (2005). Extensive chromosomal repatterning and the evolution of sterility barriers in hybrid sunflower species. Genetics 171: 291–303

  19. Lewandowski A, Boratyński A and Mejnartowicz L (2000). Allozyme investigations on the genetic differentiation between closely related pines – Pinus sylvestris, P. mugo, P. uncinata, and P. uliginosa (Pinaceae). Pl Syst Evol 221: 15–24

  20. Lewontin RC and Birch LC (1966). Hybridisation as a source of variation for adaptation to new environment. Evolution 20: 315–336

  21. Myczko Ł (2001) Porównanie polimorfizmu genetycznego plantacji sosny zwyczajnej (Pinus sylvestris L.) przed i po cięciu pielęgnacyjnym w stadium drągowiny. MS thesis, the Adam Mickiewicz University, Poznań, Poland

  22. Neet-Sarqueda C (1994). Genetic differentiation of Pinus sylvestris L. and Pinus mugo aggr. populations in Switzerland. Silvae Genet 43: 207–215

  23. Nei M (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590

  24. Nei M (1987). Molecular evolutionary genetics. Columbia University Press, New York

  25. Neumann C (1837). Jahresber Schles Gesellsch Vaterl Cultur 11: 52–57

  26. Odrzykoski IJ (2002) Studies on genetic variability in dwarf pine (Pinus mugo) using biochemical and molecular markers (in Polish). Wyd Nauk UAM, Poznań

  27. Prus-Głowacki W, Sadowski J, Szweykowski J and Wiatroszak I (1981). Quantitative and qualitative analysis of needle antigens Pinus sylvestris, Pinus mugo, Pinus uliginosa and Pinus nigra and some individuals from a hybrid swarm population. Genet Polon 22: 447–454

  28. Prus-Głowacki W, Bujas E and Ratyńska H (1998). Taxonomic position of Pinus uliginosa Neumann as related to the other taxa of Pinus mugo complex. Acta Soc Bot Pol 67: 269–274

  29. Prus-Głowacki W and Stephan BR (1998). Forest Genet 5: 155–163

  30. Siedlewska A (1994). Isoenzymatic differentiation in putative hybrid swarm population (Pinus mugo Turra × P. sylvestris L.) from “Torfowisko Zieleniec” peat-bog. Acta Soc Bot Pol 63: 325–332

  31. Song B H, Wang X Q, Wang X R, Ding K Y and Hong D Y (2003). Cytoplasmic composition in Pinus densata and population establishment of the diploid hybrid pine. Molec Ecol 12(11): 2995–3001

  32. Staszkiewicz J and Tyszkiewicz M (1969). Natural hybrids of Pinus mugo Turra × Pinus silvestris L. in Kotlina Nowotarska (in Polish). Fragm Florist Geobot 15: 187–212

  33. Staszkiewicz J and Tyszkiewicz M (1972). Variability of natural Pinus sylvestris L. × P. mugo Turra (P. × rotundata L.) hybrids in southwestern Poland and in selected stands of Czech and Moravia (in Polish). Fragm Florist Geobot 18(2): 173–191

  34. Staszkiewicz J (1993). Variability of Pinus mugo × P. sylvestris (Pinaceae) hybrid swarm in the Tisovnica nature reserve (Slovakia). Pol Bot Stud 5: 33–41

  35. Vendramin GG, Lelli L, Rossi P and Morgante M (1996). A set of primers for the amplification of 20 chloroplast microsatellites in Pinaceae. Molec Ecol 5: 595–598

  36. Wachowiak W, Leśniewicz K, Odrzykoski I, Augustyniak H and Prus-Głowacki W (2000). Acta Soc Bot Pol 69(4): 273–276

  37. Wachowiak W, Lewandowski A and Prus-Głowacki W (2005a). Reciprocal controlled crosses between Pinus sylvestris and P. mugo verified by a species-specific cpDNA marker. J Appl Genet 46(1): 41–43

  38. Wachowiak W, Celiński K and Prus-Głowacki W (2005b). Evidence of natural reciprocal hybridisation between Pinus uliginosa and P. sylvestris in the sympatric population of the species. Flora 200: 563–568

  39. Wachowiak W, Stephan BR, Schulze I, Prus-Głowacki W and Ziegenhagen B (2006a). Pl Syst Evol 257: 1–8

  40. Wachowiak W, Odrzykoski I, Myczko Ł and Prus-Głowacki W (2006b). Flora 201: 307–316

  41. Wagner DB, Furnier GR, Saghai-Maroof MA, Williams SM, Dancik BP and Allard RW (1987). Chloroplast DNA polymorphism in lodgepole and jack pines and their hybrids. Proc Natl Acad Sci USA 84: 2097–2100

  42. Wang XR, Szmidt AE and Savolainen O (2001). Genetic composition and diploid hybrid speciation of a high mountain pine, Pinus densata, native to the Tibetan plateau. Genetics 159: 337–346

  43. Watano Y, Imazu M and Shimizu T (1996). Spatial distribution of cpDNA and mtDNA haplotypes in a hybrid zone between Pinus pumila and P. parviflora var. pentaphylla (Pinaceae). J Pl Res 109: 403–408

  44. Watano Y, Kanai A and Tani N (2004). Genetic structure of hybrid zones between Pinus pumila and P. parviflora var. pentaphylla (Pinaceae) revealed by molecular hybrid index analysis. Amer J Bot 91(1): 65–72

  45. Willis K J and Andel T H (2004). Trees or no trees? The environmental of central and eastern Europe during the last glaciation. Q Sci Rev 23: 2369–2387

Download references

Author information

Correspondence to W. Wachowiak.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wachowiak, W., Prus-Głowacki, W. Hybridisation processes in sympatric populations of pines Pinus sylvestris L., P. mugo Turra and P. uliginosa Neumann. Plant Syst Evol 271, 29–40 (2008). https://doi.org/10.1007/s00606-007-0609-z

Download citation


  • P. sylvestris
  • P. mugo
  • P. uliginosa
  • hybridisation
  • molecular markers
  • reproductive barrier
  • sympatric population
  • speciation