Skip to main content
Log in

Camellia japonica L. genotypes identified by an artificial neural network based on phyllometric and fractal parameters

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The potential application of phyllometric and fractal parameters for the objective quantitative description of leaf morphology, combined with the use of Back Propagation Neural Network (BPNN) for data modelling, was evaluated to characterize and identify 25 Camellia japonica L. accessions from an Italian historical collection. Results show that the construction of a BPNN based on phyllometric and fractal analysis could be effectively and successfully used to discriminate Camellia japonica genotypes using simple dedicated instruments, such as a personal computer and an easily available optical scanner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chang HT, Bartholomew B (1984) Camellias. Timber Press, Portland (USA)

    Google Scholar 

  • Clark JY (2004) Identification of botanical specimens using artificial neural networks. In: Proceedings of the 2004 IEEE symposium on computational intelligence in bioinformatics and computational biology, La Jolla (USA), 7–8th October 2004, pp 87–94

  • Clark JY, Warwick K (1998) Artificial keys for botanical identification using a multilayer perceptron neural network (MLP). Artif Intell Rev 12: 95–115

    Article  Google Scholar 

  • Corneo A, Remotti D, Accati E (2000) Camelie dell’Ottocento nel Verbano. Regione Piemonte, Torino, Italy

    Google Scholar 

  • Durrant T (1982) The camellia story. Heinemann Publishers, Auckland, New Zealand

    Google Scholar 

  • Eder R, Wendelin S, Barna J (1994) Classification of red wine cultivars by means of anthocyanin analysis. Mitt Klosterneuburg 44: 201–212

    CAS  Google Scholar 

  • Grilli M (1881) Varietà di Camelie ottenute in Firenze. Bull Reale Soc Ort Tosc 6: 297–300

    Google Scholar 

  • Grilli M (1883) Nuove varietà di Camelie ottenute in Firenze. Bull Reale Soc Ort Tosc 8: 169–171

    Google Scholar 

  • Haykin S (1999) Neural Networks: A comprehensive foundation, 2nd Ed. Pearson Prentice Hall, USA

    Google Scholar 

  • Hertz J, Krogh A, Palmer R (1991) Introduction to the Theory of Neural Computation. Addison-Wesley, Redwood City (USA)

    Google Scholar 

  • Lombard V, Dubreuil P, Dilmann C, Baril C (2001) Genetic distance estimators based on molecular data for plant registration and protection: a review. Acta Hort 546: 55–63

    CAS  Google Scholar 

  • Mancuso S (2002) Discrimination of grapevine (Vitis vinifera L.) leaf shape by fractal spectrum. Vitis 41: 137–142

    Google Scholar 

  • Mancuso S (1999a) Elliptic Fourier analysis (EFA) and artificial neural networks (ANNs) for the identification of grapevine (Vitis vinifera L.) genotypes. Vitis 38: 73–77

    Google Scholar 

  • Mancuso S (1999b) Fractal geometry-based image analysis of grapevine leaves using the box counting algorithm. Vitis 38: 97–100

    Google Scholar 

  • Mancuso S, Nicese FP (1999) Identifying olive (Olea europaea L.) cultivars using artificial neural networks. J Am Soc Hort Sci 124: 527–531

    Google Scholar 

  • Mancuso S, Ferrini F, Nicese FP (1999) Chestnut (Castanea sativa L.) genotype identification: an artificial neural network approach. J Hort Sci Biotech 74: 777–784

    Google Scholar 

  • Mancuso S, Nicese FP, Azzarello E (2003) The fractal spectrum of the leaves as a tool for measuring frost hardiness in plants. J Hort Sci Biotech 78: 610–616

    Google Scholar 

  • Mancuso S, Nicese FP, Azzarello E (2004) Comparing fractal analysis, electrical impedance and electrolyte leakage for the assessment of cold tolerance in Callistemon and Grevillea spp. J Hort Sci Biotech 79: 627–632

    Google Scholar 

  • Pandolfi C, Mugnai S, Azzarello E, Masi E, Mancuso S (2006) Fractal geometry and neural networks for the identification and characterization of ornamental plants. In: Teixiera da Silva J (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues. vol. IV reprint, Kyoto (Japan), pp 213–225

  • Petrova E (1996) Genetic resources of ornamental flower in the Czech Republic. Zahradnictvi 23: 109–112

    Google Scholar 

  • Parks CR, Yoshikawa N, Prince L, Thakor B (1995) The application of isozymic and molecular evidence to taxonomic and breeding problems in the genus Camellia. Int Camellia J 27: 103–111

    Google Scholar 

  • Prince LM, Parks CR (2001) Phylogenetic relationships of Theaceae inferred from chloroplast DNA sequence data. Am J Bot 88: 2309–2320

    Article  CAS  Google Scholar 

  • Remotti D (2002) Identification and morpho-botanic characterization of old Camellia japonica L. cultivars grown in historic gardens of the Lake Maggiore (Italy). Acta Hort 572: 179–188

    Google Scholar 

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323: 533–536

    Article  Google Scholar 

  • Rumelhart DE, McClelland JL (1988) Exploration in parallel distributed processing. Cambridge (USA), MIT Press

    Google Scholar 

  • Sànchez-Escribano EM, Martìn JP, Carreno J, Cenis JL (1999) Use of sequence-tagged microsatellite site markers for characterizing table grape cultivars. Genome 42: 87–93

    Article  Google Scholar 

  • Sefc KM, Lopes MS, Lefort F, Botta R, Ibáñez J, Pejic I, Wagner HW, Glössl J, Steinkellner H (2000) Microsatellite variability in grapevine cultivars from different European regions and evaluation of assignment testing to assess the geographic origin of cultivars. Theor Appl Genet 100: 498–505

    Article  Google Scholar 

  • Ueno S, Tomaru N, Yoshimaru H, Manabe T, Yamamoto S (2000) Genetic structure of Camellia japonica L. in an old-growth evergreen forest, Tsushima, Japan. Mol Ecol 9: 647– 656

    Article  CAS  Google Scholar 

  • Ueno S, Tomaru N, Yoshimaru H, Manabe T, Yamamoto S (2002) Size-class differences in genetic structure and individual distribution of Camellia japonica L. in a Japanese old-growth evergreen forest. Heredity 89: 120–126

    Article  PubMed  CAS  Google Scholar 

  • Żebrowska J I, Tyrka M (2003) The use of RAPD markers for strawberry identification and genetic diversity studies. Food Agr Environ 1: 115–117

    Google Scholar 

  • Zurada JM, Malinowsli A (1994) Multilayer perceptron networks: selected aspects of training optimization. Appl Math Comp Sci 4: 281–307

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mugnai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mugnai, S., Pandolfi, C., Azzarello, E. et al. Camellia japonica L. genotypes identified by an artificial neural network based on phyllometric and fractal parameters. Plant Syst Evol 270, 95–108 (2008). https://doi.org/10.1007/s00606-007-0601-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-007-0601-7

Keywords

Navigation