Plant Systematics and Evolution

, Volume 269, Issue 3–4, pp 223–243 | Cite as

Phylogenetic relationships in Blumea (Asteraceae: Inuleae) as evidenced by molecular and morphological data

  • P. Pornpongrungrueng
  • F. Borchsenius
  • M. Englund
  • A. A. Anderberg
  • M. H. G. Gustafsson
Article

Abstract

The present study, based on sequences of cpDNA (trnL-F & psbA-trnH) and nrDNA (ITS) and morphology, examined the evolutionary relationships in Blumea and its position among related genera. The results confirmed that the closest relatives of Blumea are Caesulia, Duhaldea and Pentanema p.p., and showed that the monotypic genera Blumeopsis and Merrittia are nested within Blumea. In Blumea s.l., two major, well-supported clades were recognised and a single species, the widespread Blumea balsamifera, that could not be placed with certainty relative to the two main clades. The two main clades differ in habit, ecology and distribution. The Blumea densiflora clade contains shrubs and subshrubs of evergreen forests, distributed from continental Asia to New Guinea and Polynesia, whereas the Blumea lacera clade is a widespread paleotropical group that comprises mostly annual, weedy herbs of open forests and fields.

Keywords

Blumea Inuleae Asteraceae Phylogeny trnL-F psbA-trnITS morphology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Álvarez I and Wendel JF (2003). Ribosomal ITS sequences and plant phylogenetic inference. Molec Phylogenet Evol 29: 417–434 PubMedCrossRefGoogle Scholar
  2. Álvarez Fernández I, Fuertes Aguilar J, Panero JL and Nieto Feliner G (2001). A phylogenetic analysis of Doronicum (Asteraceae, Senecioneae) based on morphological, nuclear ribosomal (ITS), and chloroplast (trnL-F) evidence. Molec Phylogenet Evol 20: 41–64 CrossRefGoogle Scholar
  3. Anderberg AA (1989). Phylogeny and reclassification of the tribe Inuleae (Asteraceae). Canad J Bot 67: 2277–2296 Google Scholar
  4. Anderberg AA (1991a). Taxonomy and phylogeny of the tribe Inuleae (Asteraceae). Pl Syst Evol 176: 75–123 CrossRefGoogle Scholar
  5. Anderberg AA (1991b). Taxonomy and phylogeny of the tribe Plucheeae (Asteraceae). Pl Syst Evol 176: 145–177 CrossRefGoogle Scholar
  6. Anderberg AA (1994). Tribe Inuleae. In: Bremer, K (eds) Asteraceae. Cladistics & classification, pp 273–291. Timber Press, Portland Google Scholar
  7. Anderberg AA (1995). Doellia, an overlooked genus in the Asteraceae-Plucheeae. Willdenowia 25: 19–24 Google Scholar
  8. Anderberg AA and Eldenäs P (2007). XVII. Tribe Inuleae Cass. In: Kadereit, JW and Jeffrey, C (eds) The families and genera of vascular plants, vol 8. Flowering plants-eudicot, Asterales, pp 374–390. Springer, Berlin Google Scholar
  9. Anderberg AA, Eldenäs P, Bayer R and Englund M (2005). Evolutionary relationships in the Asteraceae tribe Inuleae (incl. Plucheeae) evidenced by DNA sequences of ndhF; with notes on the systematic positions of some aberrant genera. Org Divers Evol 5: 135–146 CrossRefGoogle Scholar
  10. Baldwin BG (1992). Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the Compositae. Molec Phylogenet Evol 1: 3–16 PubMedCrossRefGoogle Scholar
  11. Bayer RJ and Cross EW (2003). A reassessment of tribal affinities of Cratystylis and Haegiela (Asteraceae) based on three chloroplast DNA sequences. Pl Syst Evol 236: 207–220 CrossRefGoogle Scholar
  12. Bayer RJ and Starr JR (1998). Tribal phylogeny of the Asteraceae based on two non-coding chloroplast sequences, the trnL intron and trnL/trnF intergenic spacer. Ann Missouri Bot Gard 85: 242–256 CrossRefGoogle Scholar
  13. Bentham G and Hooker JD (1873). Compositae. Plantarum. II. Genera Lovell Reeve, London Google Scholar
  14. Bremer K (1994). Asteraceae. Cladistics & classification. Timber Press, Portland Google Scholar
  15. Bremer B, Bremer K, Heidari N, Erixon P, Olmsted RG, Anderberg AA, Källersjö M and Barkhordarian E (2002). Phylogenetics of Asterids based on 3 coding and 3 non-coding chloroplast DNA marker and the utility of non-coding DNA at higher taxonomic levels. Molec Phylogenet Evol 24: 274–301 PubMedCrossRefGoogle Scholar
  16. Burkill IH (1966). A dictionary of the economic products of the Malay Peninsula, vol I. The Ministry of Agriculture an co-operatives, Kuala Lumpur Google Scholar
  17. de Candolle AP (1836). Prodr. V. Treuttel and Würtz, Paris Google Scholar
  18. Clegg MT, Cummings MP and Durbin ML (1997). The evolution of plant nuclear genes. Proc Natl Acad Sci USA 94: 7791–7798 PubMedCrossRefGoogle Scholar
  19. Dakshini KMM and Prithipalsingh (1977). Numerical taxonomy of the genus Blumea in India. Phytomorphism 27: 247–260 Google Scholar
  20. Dakshini KMM and Prithipalsingh (1978). Section Hieraciifoliae Randeria of Blumea DC. (Asteraceae-Inuleae). Taxon 27: 45–49 CrossRefGoogle Scholar
  21. Doyle JJ (1992). Gene trees and species trees: molecular systematics as one-character taxonomy. Syst Bot 17: 144–163 CrossRefGoogle Scholar
  22. Eldenäs PK, Anderberg AA and Källersjö M (1998). Molecular phylogenetics of the tribe Inuleae s.str. (Asteraceae), based on ITS sequences of nuclear ribosomal DNA. Pl Syst Evol 210: 159–173 CrossRefGoogle Scholar
  23. Farris JS, Källersjö M, Kluge AG and Bult C (1994). Testing significance of incongruence. Cladistics 10: 315–319 CrossRefGoogle Scholar
  24. Fehrer J, Gemeinholzer B, Chrtek J and Bräutigam S (2007). Incongruent plastid and nuclear DNA phylogenies reveal ancient intergeneric hybridization in Pilosella hawkweeds (Hieracium, Cichorieae, Asteraceae). Molec Phylogenet Evol 42: 347–361 PubMedCrossRefGoogle Scholar
  25. Felsenstein J (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 CrossRefGoogle Scholar
  26. Francisco-Ortega J, Park S-J, Santos-Guerra A, Benabid A and Jansen RK (2001). Origin and evolution of the endemic Macaronesian Inuleae (Asteraceae): evidence from the internal transcribed spacers of nuclear ribosomal DNA. Biol J Linn Soc 72: 77–97 CrossRefGoogle Scholar
  27. Gagnepain F (1920). Un genre nouveau de Composées. Bull Mus Nat Hist Par 26: 75–76 Google Scholar
  28. Goertzen LR, Cannone JJ, Gutell RR and Jansen RK (2003). ITS secondary structure derived from comparative analysis: implications for sequence alignment and phylogeny of the Asteraceae. Molec Phylogenet Evol 29: 216–234 PubMedCrossRefGoogle Scholar
  29. Grierson AJC (1974). Critical notes on the Compositae of Ceylon, II. Ceylon J Sci 11: 12–15 Google Scholar
  30. Gustafsson MHG, Pepper AS-R, Albert VA and Källersjö M (2001). Molecular phylogeny of the Barnadesioideae (Asteraceae). Nord J Bot 21: 149–160 CrossRefGoogle Scholar
  31. Hall TA (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41: 95–98 Google Scholar
  32. Karis PO (1993). Morphological phylogenetics of the Asteraceae-Asteroideae, with notes on character evolution. Pl Syst Evol 186: 69–93 CrossRefGoogle Scholar
  33. Kim K-J and Jansen RK (1995). ndhF sequence evolution and the major clades in the sunflower family. Proc Natl Acad Sci USA 92: 10379–10383 PubMedCrossRefGoogle Scholar
  34. Kim S-C, Crawford DJ, Jansen RK and Santos-Guerra A (1999). The use of non-coding region of chloroplast DNA in phylogenetic studies of the subtribe Sonchinae (Asteraceae: Lactuceae). Pl Syst Evol 215: 85–99 CrossRefGoogle Scholar
  35. Kim S-C, Lu C-T and Lepschi BJ (2004). Phylogenetic positions of Actites megalocarpa and Sonchus hydrophilus (Sonchinae: Asteraceae) based on ITS and chloroplast non-coding DNA sequences. Austral Syst Bot 17: 73–81 CrossRefGoogle Scholar
  36. Maddison WP and Maddison DR (2001). MacClade, analysis of phylogeny and character evolution, Version 4.03. Sinauer Associates, Sunderland Google Scholar
  37. Mattfeld J (1929). Die Compositen von Papuasien. Bot Jahrb Syst 62: 425 Google Scholar
  38. McKenzie RJ, Muller EM, Skinner AKW, Karis PO and Barker NP (2006). Phylogenetic relationships and generic delimitation in subtribe Arctotidinae (Asteraceae: Arctotideae) inferred by DNA sequence data from ITS and five chloroplast regions. Amer J Bot 93: 1222–1235 Google Scholar
  39. Merrill ED and Merritt ML (1910). The flora of Mount Pulog. Philipp. J Sci 5: 393–401 Google Scholar
  40. Merxmüller H, Leins P and Roessler H (1977). Inuleae – systematic review. In: Heywood, VH, Harborne, JB, and Turner, BL (eds) The biology and chemistry of the Compositae II, pp 577–602. Academic, London Google Scholar
  41. Noyes RD and Rieseberg LH (1999). ITS sequence data support a single origin for North American Astereae (Asteraceae) and reflect deep geographic divisions in Aster s.l. Amer. J Bot 86: 398–412 CrossRefGoogle Scholar
  42. Pandey AK, Jha SM and Dhakal MR (2000). Seed coat, pericarp and pseudopericarp in Caesulia axillaris Roxb. (Asteraceae). Compositae Newslett 35: 37–43 Google Scholar
  43. Panero JL and Funk VK (2002). Toward a phylogenetic subfamilial classification for the Compositae (Asteraceae). Proc Biol Soc Washington 115: 909–922 Google Scholar
  44. Pelser PB, van den Hof K, Gravendeel B and van der Meijden R (2004). The systematic value of morphological characters in Senecio sect. Jacobaea (Asteraceae) as compared to DNA sequences. Syst Bot 29: 790–805 CrossRefGoogle Scholar
  45. Randeria AJ (1960). The Compositae genus Blumea: A taxonomic revision. Blumea 10: 176–317 Google Scholar
  46. Sang T, Crawford DJ and Stuessy TF (1997). Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Amer J Bot 84: 1120–1136 CrossRefGoogle Scholar
  47. Schultz-Bipontinus CH (1843). Walpers, GG (eds) Reportorium Botanices Systematicae. Tomus II, pp. Sumtibus Friderici Hofmeister, Lipsiae Google Scholar
  48. Simmons MP and Ochoterena H (2001). Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49: 369–381 CrossRefGoogle Scholar
  49. Small RL, Cronn RC and Wendel JF (2004). L. A. S. Johnson review No. 2: Use of nuclear genes for phylogeny reconstruction in plants. Austral Syst Bot 17: 145–170 CrossRefGoogle Scholar
  50. Soejima A and Wen J (2006). Phylogenetic analysis of the grape family (Vitaceae) based on three chloroplast markers. Amer J Bot 93: 278–287 Google Scholar
  51. Soltis DE, Johnson LA and Looney C (1996). Discordance between ITS and chloroplast topologies in the Boykinia Group (Saxifragaceae). Syst Bot 21: 169–185 CrossRefGoogle Scholar
  52. Swofford DL (1998). PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods), Version 4.0. Sinauer Associates, Sunderland Google Scholar
  53. Taberlet P, Gielly L and Bouvet J (1991). Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl Molec Biol 17: 1105–1109 CrossRefGoogle Scholar
  54. Thompson JD, Higgins DG and Gibson TJ (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucl Acids Res 22: 4673–4680 PubMedCrossRefGoogle Scholar
  55. Qiu Y-L, Lee J, Bernasconi-Quadroni F, Soltis DE, Soltis PS, Zanis M, Zimmer EA, Chen Z, Savolainenk V and Chase MW (1999). The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402: 404–407 PubMedCrossRefGoogle Scholar
  56. Wagstaff SJ and Breitwieser I (2002). Phylogenetic relationships of New Zealand Asteraceae inferred from ITS sequences. Pl Syst Evol 231: 203–224 CrossRefGoogle Scholar
  57. Wild H (1969). The Compositae of the Flora Zambesiaca area II. Kirkia 7: 121–132 Google Scholar
  58. Wortley AH and Scotland RW (2006). The effect of combining molecular and morphological data in published phylogenetic analyses. Syst Biol 55: 677–685 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • P. Pornpongrungrueng
    • 1
  • F. Borchsenius
    • 1
  • M. Englund
    • 2
    • 3
  • A. A. Anderberg
    • 3
  • M. H. G. Gustafsson
    • 1
  1. 1.Department of Biological SciencesUniversity of AarhusÅrhus CDenmark
  2. 2.Department of BotanyStockholm UniversityStockholmSweden
  3. 3.Department of Phanerogamic BotanySwedish Museum of Natural HistoryStockholmSweden

Personalised recommendations