Skip to main content
Log in

Evolutionary history and systematics of Acer section Acer – a case study of low-level phylogenetics

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The phylogenetic and systematic position of all species of Acer section Acer from North America, East Asia, and western Eurasia are evaluated using various splits-based networks (distance networks, bipartition networks), ITS motif analysis, and morphology. Molecular analyses are based on 276 ITS clones obtained from 101 specimens collected mainly from natural stands. The large sample size ensures to cover sufficiently inter- and intraspecific ITS variability of this group. Formerly recognised species are generally supported by ITS data and morphology; the combination of molecular (ITS) and morphological criteria allows defining seven (supraspecific) taxonomic groups prior to a phylogenetic reconstruction. Phylogenetic signals captured in modern ITS sequences are partly incompatible but clearly suggest that Acer section Acer underwent three major radiations. Horizontal gene flow is indicated between ancestors of extant taxa that are isolated at present times. The level of ITS derivation can be estimated and corresponds to levels of morphological differentiation and (palaeo-) biogeographical patterns. Based on our results we question the potential of cladistic approaches to infer low-level evolution in an adequate manner and demonstrate that speciation in members of Acer section Acer is not generally linked to cladogenesis. The data and methodologies provided here allow to trace pathways of low-level evolution and to analyse such data sets with a less restricted (non-dichotomous) dynamic concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bandelt H-J and Dress AWM (1992a). A canonical decomposition theory for metrics on a finite set. Adv Math 92: 622–628

    Article  Google Scholar 

  • Bandelt H-J and Dress AWM (1992b). Split decomposition: a new and useful approach to phylogenetic analysis of distance data. Molec Phylogent Evol 1: 242–252

    Article  CAS  Google Scholar 

  • Bryant D, Moulton V (2002) NeighborNet: an agglomerative method for the construction of planar phylogenetic networks. In: Guigó R, Gusfield D (eds) Algorithms in bioinformatics, Second International Workshop, WABI. LNCS Vol. 2452. Springer Rome, Berlin, Heidelberg, New York, 375–391

  • Bryant D and Moulton V (2004). Neighbor-net: an agglomerative method for the construction of phylogenetic networks. Molec Biol Evol 21: 255–265

    Article  PubMed  CAS  Google Scholar 

  • Crane PR, Manchester SR and Dilcher D (1990). A preliminary survey of fossil leaves and well-preserved reproductive structures from the Sentinel Butte Formation (Paleocene) near Almont, North Dakota. Fieldiana Geol, New Series 20: 1–63

    Google Scholar 

  • Cronn R, Cedroni M, Haselkorn T, Grover C and Wendel JF (2002). PCR-mediated recombination in amplification products derived from polyploid cotton. Theor Appl Genet 104: 482–489

    Article  PubMed  CAS  Google Scholar 

  • de Jong PC (1994). Taxonomy and reproductive biology of maples. In: van Gelderen DM, de Jong PC and Oterdoom HJ (eds) Maples of the world, pp 69–104. Timber Press, Portland

    Google Scholar 

  • Delendick TJ (1981). A systematic review of the Aceraceae. City University of New York, New York

    Google Scholar 

  • Delendick TJ (1982). Infrageneric nomenclature in Acer (Aceraceae). Brittonia 34: 81–84

    Article  Google Scholar 

  • Denk T, Grimm G, Stögerer K, Langer M and Hemleben V (2002). The evolutionary history of Fagus in western Eurasia: Evidence from genes, morphology and the fossil record. Pl Syst Evol 232: 213–236

    Article  Google Scholar 

  • Denk T and Grimm GW (2005). Phylogeny and biogeography of Zelkova (Ulmaceae sensu stricto) as inferred from leaf morphology, ITS sequence data and the fossil record. Bot J Linn Soc 147: 129–157

    Article  Google Scholar 

  • Denk T, Grimm GW and Hemleben V (2005a). Patterns of molecular and morphological differentiation in Fagus: implications for phylogeny.. Amer J Bot 92: 1006–1016

    CAS  Google Scholar 

  • Denk T, Grímsson F and Kvaček Z (2005b). The Miocene floras of Iceland and their significance for late Cainozoic North Atlantic biogeography. Bot J Linn Soc 149: 369–417

    Article  Google Scholar 

  • Felsenstein J (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791

    Article  Google Scholar 

  • Flora Europaea (1998–2006) Flora Europaea online database (excerpt from the PANDORA taxonomic data base system). Maintained by Royal Botanic Garden Edinburgh. URL: http://rbg-web2.rbge.org.uk/FE/fe.html.

  • Fukarek P and Celjo A (1959). Hybrides entre Acer pseudoplatanus et A heldreichii. Sumarstvo 12: 543–548

    Google Scholar 

  • Gebhardt C, Ritter E, Debener T, Schachtschabel U, Walkemeier B, Uhrig H and Salamini F (1989). RFLP analysis and linkage mapping in Solanum tuberosum. Theor Appl Genet 78: 65–75

    Article  Google Scholar 

  • Grimm GW (2003) Tracing the mode and speed of molecular Evolution - A case study of genus Acer L and Fagus L. Eberhard-Karls University, Tübingen URN: urn:nbn:de:bsz:21-opus-15744

  • Grimm GW, Schlee M, Komarova NY, Volkov R A, Hemleben V (2005) Low-level taxonomy and intrageneric evolutionary trends in higher plants. In: Endress PK, Lüttge U, Parthier B (eds) From plant taxonomy to evolutionary biology. Nova Acta Leopoldina NF, Vol. 92, No. 342. Wissenschaftl. Verlagsges. mbH. Stuttgart, pp 129–145

  • Grimm GW, Renner SS, Stamatakis A and Hemleben V (2006). A nuclear ribosomal DNA phylogeny of Acer inferred with maximum likelihood, splits graphs, and motif analyses of 606 sequences. Evol Bioinform 2: 279–294

    CAS  Google Scholar 

  • Grimm GW, Denk T, Hemleben V (2007) Coding of intraspecific nucleotide polymorphisms: a tool to resolve reticulate evolutionary relationships in the ITS of beech trees (Fagus L., Fagaceae). Sys Biodiv 5

  • GRIN (2006) Germplasm Resources Information Network - (GRIN) [Online Database]. Maintained by USDA, ARS, National Genetic Resources Program. URL: http://www.ars-grin.-gov2/cgi-bin/npgs/html/index.pl

  • Hemleben V, Ganal M, Gerstner J, Schiebel K, Torres RA (1988) Organization and length heterogeneity of plant ribosomal RNA genes. In: Kahl G (ed) Architecture of eukaryotic genes. VCH Verlagsgesellschaft mbH, Weinheim, pp 371–383

  • Hershkovitz MA and Lewis LA (1996). Deep-level diagnostic value of the rDNA-ITS region. Molec Biol Evol 13: 1276–1295

    PubMed  CAS  Google Scholar 

  • Hershkovitz MA and Zimmer EA (1996). Conservation patterns in angiosperm rDNA ITS2 sequences. Nucl Acids Res 24: 2857–2867

    Article  PubMed  CAS  Google Scholar 

  • Hershkovitz MA, Zimmer EA and Hahn WJ (1999). Ribosomal DNA sequences and angiosperm systematics. In: Hollingsworth, PM, Bateman, R M, and Gornall, RJ (eds) Molecular systematics and plant evolution, pp 268–326. Taylor & Francis, London

    Google Scholar 

  • Huelsenbeck JP and Ronquist F (2001). MrBayes: Bayesian inference of phylogeny. Bioinformatics 17: 754–755

    Article  PubMed  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F, Nielsen R and Bollback JP (2001). Evolution – Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294: 2310–2314

    Article  PubMed  CAS  Google Scholar 

  • Huson DH (1998). SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14: 68–73

    Article  PubMed  CAS  Google Scholar 

  • Huson DH and Bryant D (2006). Application of phylogenetic networks in evolutionary studies. Molec Biol Evol 23: 254–267

    Article  PubMed  CAS  Google Scholar 

  • ITIS (2006) Integrated Taxonomic Information System - (ITIS) [Online Database]. Maintainedby ITIS Organisation. URL: http://www.itis.gov/index.html

  • Kimura M (1983). The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Knobloch E (1998). Der pliozäne Laubwald von Willershausen am Harz (Mitteleuropa). Documenta naturae 120: 1–302

    Google Scholar 

  • Kolakovski AA and Ratiani NK (1967). The Pliocene Flora of Maly Shirak. Trans Bot Gard Sukhumi 16: 30–71

    Google Scholar 

  • Komarova NY, Grabe T, Huigen DJ, Hemleben V and Volkov R A (2004). Organization, differential expression and methylation of rDNA in artificial Solanum allopolyploids.. Pl Molec Biol 56: 439–463

    Article  CAS  Google Scholar 

  • Kovar-Eder J, Kvacek Z and Ströbitzer-Hermann M (2004). The Miocene flora of Parschlug (Styria, Austria) – revision and synthesis. Ann Naturhist Mus Wien 105A: 45–159

    Google Scholar 

  • Kvacek Z, Velitzelos D, Velitzelos E (2002) Late Miocene Flora of Vegora, Macedonia, N Greece. Korali, Athens

  • Kvaček Z and Walther H (2004). Oligocene flora of Bechlejovice at Decí from the neovolcanic area of the reské stredohorí Mountains, Czech Republic. Acta Mus Nat Pragae, Ser B - Hist Nat 60: 9–60

    Google Scholar 

  • Lim KY, Kovarik A, Matyasek R, Bezdek M, Lichtenstein CP and Leitch AR (2000). Gene conversion of ribosomal DNA in Nicotiana tabacum is associated with undermethylated, decondensed and probably active gene units. Chromosoma 109: 161–172

    Article  PubMed  CAS  Google Scholar 

  • Mai HD (1983). Studien an Endokarpien europäischer und westasiatischer Arten der Gattung Acer L. (Aceraceae). Gleditschia 10: 37–57

    Google Scholar 

  • Mai HD (1984). Die Endokarpien bei der Gattung Acer L. Eine biosystematische Studie. Gleditschia 11: 17–64

    Google Scholar 

  • Mai HD (1995). Tertiäre Vegetationsgeschichte Europas. Gustav Fischer Verlag, Jena, Stuttgart, New York

    Google Scholar 

  • Mai HD and Walther H (1978). Die Floren der Haselbacher Serie im Weisselster-Becken (Bezirk Leipzig, DDR). Ab Staatl Mus ineral Geol Dresden 28: 1–200

    Google Scholar 

  • Mai HD and Walther H (1991). Die oligozänen und untermiozänen Floren NW-Sachsens und des Bitterfelder Raumes. Abh Staatl Mus Mineral Geol Dresden 38: 1–230

    Google Scholar 

  • Manchester SR (1999). Biogeographical relationships of North American Tertiary floras. Ann Missouri Bot Gard 86: 472–522

    Article  Google Scholar 

  • Massalongo A, Scarabelli G (1859) Studii sulla flora fossile e geologica stratigrafica del Senigalliese, Imola.

  • Minin V, Abdo Z, Joyce P and Sullivan J (2003). Performance-based selection of likelihood models for phylogeny estimation. Syst Biol 52: 674–683

    Article  PubMed  Google Scholar 

  • Müller KF (2005). The efficiency of different search strategies for estimating parsimony, jackknife, bootstrap and Bremer support. BMC Evol Biol 5: 58

    Article  PubMed  Google Scholar 

  • Nylander JAA (2004) MrModeltest. 2.1 ed. Uppsala: Program distributed by the author. Evolutionary Biology Centre, Uppsala University

  • Ogata K (1967). A systematic study of the genus Acer. Bull Tokyo Imp Univ Forest 63: 89–206

    Google Scholar 

  • Pfosser MF, Guzy-Wróbelska J, Sun B-Y., Stuessy TF, Sugawara T and Fujii N (2002). The origin of species of Acer (Sapindaceae) endemic to Ullung Island. Korea Syst Bot 27: 351–367

    Google Scholar 

  • Pojárkova AI (1933). Botanico-geographical survey of the maples of the USSR in connection with the history of the whole genus Acer L. Acta Inst Bot Acad Sci USSR, Ser. 1 1: 225–374

    Google Scholar 

  • Rannala B and Yang Z (1996). Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference. J Molec Evol 43: 304–311

    PubMed  CAS  Google Scholar 

  • Ronquist F and Huelsenbeck JP (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574

    Article  PubMed  CAS  Google Scholar 

  • Sachse M (2004). Die Neogene Mega- und Mikroflora von Makrilia auf Kreta und ihre Aussagen zur Klima- und Vegetationsgeschichte des östlichen Mittelmeergebietes. Flora Tertiaria Mediterranea 6: 1–323

    Google Scholar 

  • Saporta G (1867). Études sur la végétation du sud-est de la France á l'époque tertiaire, 3. Ann Sc Nat, Bot 5: 5–136

    Google Scholar 

  • Ströbitzer-Hermann M (2002) Results of cuticularanalytic, systematic-taxonomic, stratigraphic and palaeoecological investigations in fossil Acer-species. 6th European Palaeobotany-Palynology Conference. Athens, Greece, 165–166

  • Ströbitzer-Hermann M, Kovar-Eder J and Vitek E (2000). Kutikularanalytische Untersuchungen an Acer heldreichii Orph. ex Boiss. ssp. heldreichii und ssp. trautvetteri (Medw.) Murray sowie Acer pseudoplatanus L. Ann Naturhist Mus Wien 102B: 409–416

    Google Scholar 

  • Ströbitzer-Hermann M and Kovar-Eder J (2002). Acer L.: Some stratigraphically relevant species and their importance as potenital indicators of vegetation conditions. Acta Univ Carol - Geol 46: 101–106

    Google Scholar 

  • Swofford DL (2002). PAUP*: Phylogenetic analysis using parsimony (* and other methods). 4th ed. National Illinois History Survey, Champaign

    Google Scholar 

  • Tanai T (1983). Revisions of Tertiary Acer from East Asia. J Fac Sc, Hokkaido Uni, Ser. IV: Geol Mineral 20: 291–390

    Google Scholar 

  • Torres RA, Ganal. M and Hemleben V (1990). GC balance in the internal transcribed spacers ITS1 and ITS2 of nuclear ribosomal DNA. J Molec Evol 30: 170–181

    Article  PubMed  CAS  Google Scholar 

  • van Gelderen DM, de Jong PC, and Oterdoom HJ (1994). Maples of the world. Timber Press, Portland

    Google Scholar 

  • Volkov RA, Borisjuk NV, Panchuk I I, Schweizer D and Hemleben V (1999). Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum. Molec Biol Evol 16: 311–320

    PubMed  CAS  Google Scholar 

  • Volkov R A, Komarova NY, Hemleben V (2007) Ribosomal DNA and plant hybrids: Inheritance, rearrangement, expression. Syst Biodiv 5

  • Watters H (1968). Acer L. In: Tutin, TG, Heywood, VH, Burges, NA, Moore, DM, Valentine, DH, Walters, SM and Webb, DA (eds) Flora Europea 2. Rosaceae to Umbelliferace, pp 238–239. Cambridge University Press, Cambridge

    Google Scholar 

  • Walther H (1972). Studien über tertiäre Acer Mitteleuropas. Abhandl Staatl Mus Mineral Geol Dresden 19: 1–309

    Google Scholar 

  • Walther H (1999). Die Tertiärflora von Kleinsaubernitz bei Bauzen. Palaeontographica B 249: 63–174

    Google Scholar 

  • Wolfe JA and Tanai T (1987). Systematics, phylogeny and distribution of Acer in the Cenozoic of western North America. J Fac Sc, Hokkaido Univ, Ser. IV: Geol Mineral 22: 1–246

    Google Scholar 

  • Yaltirik F (1967). Contribution to the taxonomy of woody plants in Turkey. Notes Roy Bot Gard, Edinburgh 28: 9–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. W. Grimm.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimm, G., Denk, T. & Hemleben, V. Evolutionary history and systematics of Acer section Acer – a case study of low-level phylogenetics. Plant Syst. Evol. 267, 215–253 (2007). https://doi.org/10.1007/s00606-007-0572-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-007-0572-8

Keywords

Navigation