Skip to main content
Log in

Dispersal-mediated selection on plant height in an autochorously dispersed herb

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Dispersal ability is an important fitness component in most plant species. Therefore, some phenotypic traits can be selected due to their effect on dispersal. In this study I determine the potential for dispersal-mediated selection on plant height in an autochorous plant, Erysimum mediohispanicum (Brassicaceae). Selection was quantified by selection gradients, structural equation modeling and generalized additive models. I detected significant dispersal-mediated linear selection gradient on plant height, taller plants dispersing seeds farther. Nevertheless, the generalized additive models suggest that the selection on stalk height was non linear. Indeed, it detected a threshold in the effect of stalk height on dispersal ability; plants shorter than that threshold had an extremely short dispersal, whereas plants taller than that threshold dispersed the seeds very far. Furthermore, the structural equation modeling showed that stalk height indirectly affected dispersal distance through its significant effect on one reproduction-related fitness component, taller plants having greater fecundity. Selection on E. mediohispanicum stalk height occurs through two simultaneous paths, one via producing many seeds and the other through increasing probability of dispersing them far away.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcántara J and Rey P (2003). Conflicting selection pressures on seed size: evolutionary ecology of fruit size in a bird-dispersed tree. Olea europaea. J Evol Biol 16: 1168–1180

    Article  PubMed  Google Scholar 

  • Banks DL, Olszewski RT and Maxion RA (2003). Comparing methods for multivariate nonparametric regression. Commun Stat Simul Comput 32: 541–571

    Article  Google Scholar 

  • Bullock JM and Clarke RT (2000). Long distance seed dispersal by wind: measuring and modelling the tail of the curve. Oecologia 124: 506–521

    Article  Google Scholar 

  • Cheptou PO, Lepart J and Escarré J (2001). Differenticial outcrossing rates in dispersing and non-dispersing achenes in the heterocarpic plant Crepis sancta (Asteraceae). Evol Ecol 15: 1–13

    Article  Google Scholar 

  • Clark JS, Beckage B, Camill P, Cleveland B, Hillerislambers J, Lichter J, Mclachlan J, Mohan J and Wyckoff P (1999). Interpreting recruitment limitation in forests. Amer J Bot 86: 1–16

    Article  Google Scholar 

  • Donohue K (1997). Seed dispersal in Cakile edentula var. lacustris: decoupling the fitness effects of density and distance from the home site. Oecologia 110: 520–527

    Article  Google Scholar 

  • Donohue K (1998). Maternal determinants of seed dispersal in Cakile edentula: fruit, plant and site traits. Ecol 79: 2771–2788

    Google Scholar 

  • Donohue K (1999). Seed dispersal as a maternally influenced character: mechanistic basis of maternal effects and selection on maternal characters in an annual plant. Amer Naturalist 154: 674–689

    Article  Google Scholar 

  • Donohue K, Polisetty CR and Wender NJ (2005). Genetic basis and consequences of niche construction: plasticity-induced genetic constraints on the evolution of seed dispersal in Arabidopsis thaliana. Amer Naturalist 165: 537–550

    Article  Google Scholar 

  • Falconer DS and Mackay TFC (1995). Introduction to quantitative genetics, 4th ed. Longman Scientific and Technical, New York

    Google Scholar 

  • Forget PM, Lambert JR, Hulme PE, Vander Wall SB (2005) Seed fate: predation, dispersal and seedling establishment. CABI.

  • Ganeshaiah KN and Uma Shaanker R (1991). Seed size optimization in a wind dispersed tree Butea monosperma: a trade off between seedling establishment and pod dispersal efficiency. Oikos 60: 3–6

    Article  Google Scholar 

  • Gómez JM (2003). Herbivory reduces the strength of pollinator-mediated selection in the Mediterranean herb Erysimum mediohispanicum: Consequences for plant specialization. Amer Naturalist 162: 242–256

    Article  Google Scholar 

  • Gómez JM (2005a). Non-additivity effect of herbivores and pollinators on Erysimum mediohispanicum (Cruciferae) fitness. Oecologia 143: 412–418

    Article  Google Scholar 

  • Gómez JM (2005b). Ungulate effect on the performance, abundance and spatial structure of two montane herbs: A 7-yr experimental study. Ecol Monogr 75: 231–258

    Article  Google Scholar 

  • Gómez JM, Perfectti F and Camacho JPM (2006). Natural selection on Erysimum mediohispanicum flower shape: Insights into the evolution of zygomorphy. Amer Naturalist 168: 531–545

    Article  Google Scholar 

  • Greene DF and Johnson EA (1989). A model of wind dispersal of winged or plumed seeds. Ecology 70: 339–347

    Article  Google Scholar 

  • Greenwood-Lee JM and Taylor PD (2001). The evolution of dispersal in spatially varying environments. Evol Ecol Res 3: 649–665

    Google Scholar 

  • Hamilton WD and May RM (1977). Dispersal in stable habitats. Nature 269: 578–81

    Article  Google Scholar 

  • Hastie TJ and Tibshirani RJ (1986). Generalized additive models. Stat Sci 1: 297–318

    Article  Google Scholar 

  • Hastie TJ and Tibshirani RJ (1990). Generalized additive models. Chapman and Hall, New York

    Google Scholar 

  • Hedge SG, Uma Shaanker R and Ganeshaiah KN (1991). Evolution of seed size in the bird-dispersed tree Santalum album L.: a trade-off between seedling establishment and dispersal efficiency. Evol Trends Pl 5: 131–135

    Google Scholar 

  • Howe HF and Miriti MN (2004). When seed dispersal matters. BioScience 54: 651–660

    Article  Google Scholar 

  • Howe HF and Smallwood J (1982). Ecology of seed dispersal. Annual Rev Ecol Syst 13: 201–228

    Article  Google Scholar 

  • Jordano P (1995). Frugivory-mediated selection on fruit and seed size: birds and St. Lucie's Cherry, Prunus mahaleb. Ecology 76: 2627–2639

    Article  Google Scholar 

  • Lande R and Arnold SJ (1983). The measurement of selection on correlated characters. Evol 37: 1210–1226

    Article  Google Scholar 

  • Levey DJ, Galetti M (2002) Seed dispersal and frugivory: ecology, evolution and conservation. CABI.

  • Levin SA, Muller-Landau HC, Nathan R and Chave J (2003). The ecology and evolution of seed dispersal: a theoretical perspective. Ann Rev Ecol Evol Syst 34: 575–604

    Article  Google Scholar 

  • McEvoy PB and Cox CS (1987). Wind dispersal distances in dimorphic achenes of ragwort, Senecio jacobaea. Ecology 68: 2006–2015

    Article  Google Scholar 

  • Meyer SE and Carlson SL (2001). Achene mass variation in Ericameria nauseosus (Asteraceae) in relation to dispersal ability and seedling fitness. Funct Ecol 15: 274–281

    Article  Google Scholar 

  • Moles AT, Ackerly DA, Webb CO, Tweddle JC, Dickie JB, Pitman AJ and Westoby M (2005). Factors that shape seed mass evolution. Proc Natl Acad Sci USA 102: 10540–10544

    Article  PubMed  CAS  Google Scholar 

  • Morris DW, Lundberg P and Ripa J (2001). Hamilton's rule confronts ideal free habitat selection. Proc Roy Soc Lond Ser B 268: 921–924

    Article  CAS  Google Scholar 

  • Morse DH and Schmitt J (1985). Propagule size, dispersal ability and seedling performance in Asclepias syriaca. Oecologia 67: 372–379

    Article  Google Scholar 

  • Narbona E, Arista M and Ortiz PL (2005). Explosive seed dispersal in two perennial Mediterranean Euphorbia species (Euphorbiaceae). Amer J Bot 92: 510–516

    Article  Google Scholar 

  • Nathan R, Safriel UN, Noy-Meir I and Schiller G (2000). Spatiotemporal variation in seed dispersal and recruitment near and far from Pinus halepensis trees. Ecology 81: 2156–2169

    Google Scholar 

  • Nathan R, Safriel UN and Noy-Meir I (2001). Field validation and sensitivity analysis of a mechanistic model for tree seed dispersal by wind. Ecology 82: 374–388

    Article  Google Scholar 

  • Nathan R, Perry G, Cronin JT, Strand AE and Cain ML (2003). Methods for estimating long-distance dispersal. Oikos 103: 261–273

    Article  Google Scholar 

  • Olivieri I, Michalakis Y and Gouyon PH (1995). Metapopulation genetics and the evolution of dispersal. Amer Naturalist 146: 202–228

    Article  Google Scholar 

  • Picó X, Ouborg NJ and van Groenendael J (2004). Influence of selfing and maternal effects on life-cycle traits and dispersal ability in the herb Hypochaeris radicata (Asteraceae). Bot J Linn Soc 146: 163–170

    Article  Google Scholar 

  • Pugesek BH (2003). Modeling means in latent variable models of natural selection. In: Pugesek, BH, Tomer, A and von Eye, A (eds) Structural equation modeling, applications in ecological and evolutionary biology, pp 297–311. Cambridge University Press, Cambridge

    Google Scholar 

  • Rawling JO, Pantula SG and Dickey DA (1998). Applied regression analysis, a research tool. Springer, Germany

    Book  Google Scholar 

  • Schluter D and Nychka D (1994). Exploring fitness surfaces. Amer Naturalist 143: 597–616

    Article  Google Scholar 

  • Shipley B (2000). Cause and correlation in biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Sheldon JC and Burrows FM (1973). The dispersal effectiveness of the achene-pappus units of selected Compositae in steady winds with convection. New Phytol 72: 665–675

    Article  Google Scholar 

  • Skarpaas O, Stabbetorp OE, Ronning I and Svennungsen TO (2004). How far can a hawk's beard fly? Measuring and modelling the dispersal of Crepis praemorsa. J Ecol 92: 747–757

    Article  Google Scholar 

  • Soons MB and Heil GW (2002). Reduced colonisation capacity in fragmented populations of wind-dispersed grassland forbs. J Ecol 90: 1033–1043

    Article  Google Scholar 

  • Soons MB, Heil GW, Nathan R and Katul GG (2004). Determinants of long-distance seed dispersal by wind in grasslands. Ecology 85: 3056–3068

    Article  Google Scholar 

  • StatSoft (2004) STATISTICA for Windows (program manual). StatSoft, Tulsa

  • The R Development Core Team (2005) R 2.0.0: A Language and Environment. The Foundation for statistical Computing, Vienna. http://www.r-project.org

  • Thiede DA and Augspurger CK (1996). Intraspecific variation in seed dispersion of Lepidium campestre (Brassicaceae). Amer J Bot 83: 856–866

    Article  Google Scholar 

  • Thode HC (2002). Testing for normality. Marcel Dekker, New York

    Google Scholar 

  • Venable DL and Levin DA (1985). Ecology of achene dimorphism in Heterotheca latifolia. I. Achene structure, germination and dispersal. J Ecol 73: 133–145

    Article  Google Scholar 

  • Wender NJ, Polisetty CR and Donohue K (2005). Density-dependent processes influencing the evolutionary dynamics of dispersal: a functional analysis of seed dispersal in Arabidopsis thaliana (Brassicaceae). Amer J Bot 92: 960–971

    Article  Google Scholar 

  • Wenny DG (2000). Seed dispersal, seed predation and seedling recruitment of a neotropical montane tree. Ecol Monogr 70: 331–351

    Google Scholar 

  • Wenny DG (2001). Advantage of seed dispersal: a re-evaluation of direct dispersal. Evol Ecol Res 3: 51–74

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Gómez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez, J. Dispersal-mediated selection on plant height in an autochorously dispersed herb. Plant Syst. Evol. 268, 119–130 (2007). https://doi.org/10.1007/s00606-007-0568-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-007-0568-4

Keywords

Navigation