Advertisement

Plant Systematics and Evolution

, Volume 266, Issue 1–2, pp 59–78 | Cite as

Polyploidy, reproductive biology, and Rosaceae: understanding evolution and making classifications

  • T. A. Dickinson
  • E. Lo
  • N. Talent
Article

Abstract

The relationship between polyploidy and breeding system is of critical importance for understanding evolution and improving the taxonomy of large Rosaceous genera. Reviewing the data available for the family and for tribe Pyreae (formerly subfamily Maloideae) in particular, it appears that hybridization, pseudogamous gametophytic apomixis, polyploidy, and self-compatibility are closely linked. Studies of the evolutionary significance of any one or two of these factors need to consider the others as well. Taxonomic decisions likewise need to be informed by knowledge of how these factors affect patterns of phenetic and genetic variation.

Keywords

Gametophytic apomixis hybridization Maloideae pollen-ovule ratio pseudogamy self-compatibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldasoro J. J., Aedo C., Navarro C. and Garmendia F. M. (1998). The genus Sorbus (Maloideae, Rosaceae) in Europe and in North Africa: Morphological analysis and systematics. Syst. Bot. 23: 189–212 CrossRefGoogle Scholar
  2. Aldasoro J. J., Aedo C., Garmendia F. M., Pando de la Hoz F. and Navarro C. (2004). Revision of Sorbus subgenera Aria and Torminaria (Maloideae - Rosaceae). Syst. Bot. Monogr. 69: 148 Google Scholar
  3. Alice L. A. and Campbell C. S. (1999). Phylogeny of Rubus based on nuclear ribosomal DNA internal transcribed spacer region sequences. Amer. J. Bot. 86: 81–97 CrossRefGoogle Scholar
  4. Amsellem L., Noyer J. L. and Hossaert-Mckey M. (2001). Evidence for a switch in the reproductive biology of Rubus alceifolius (Rosaceae) towards apomixis, between its native range and its area of introduction. Amer. J. Bot. 88: 2243–2251 CrossRefGoogle Scholar
  5. Amsellem L., Pailler T., Noyer J. L. and Hossaert-McKey M. (2002). Characterisation of pseudogamous apospory in the reproductive biology of the invasive weed Rubus alceifolius (Rosaceae) in its area of introduction. Acta Bot. Gallica 149: 217–224 Google Scholar
  6. Asker S. E. and Jerling L. (1992). Apomixis in plants. CRC Press, Boca Raton Google Scholar
  7. Aspinwall N. and Christian T. (1992a). Clonal structure, genotypic diversity and seed production in populations of Filipendula rubra (Rosaceae) from the Northcentral United-States. Amer. J. Bot. 79: 294–299 CrossRefGoogle Scholar
  8. Aspinwall N. and Christian T. (1992b). Pollination biology, seed production and population structure in Queen-of-the-Prairie, Filipendula rubra (Rosaceae) at Botkin Fen, Missouri. Amer. J. Bot. 79: 488–494 CrossRefGoogle Scholar
  9. Bartish I. V., Hylmo B. and Nybom H. (2001). RAPD analysis of interspecific relationships in presumably apomictic Cotoneaster species. Euphytica 120: 273–280 CrossRefGoogle Scholar
  10. Bradshaw A. D. (1971) The significance of hawthorns. In: History S. C. f. L. (ed.) Hedges and local history. National Council of Social Service, London, pp. 20–29.Google Scholar
  11. Brown H. B. (1910). The genus Crataegus with some theories of the origin of its species. Bull. Torrey Bot. Club 37: 251–260 CrossRefGoogle Scholar
  12. Burton T. L. and Husband B. C. (1999). Population cytotype structure in the polyploid Galax urceolata (Didpensidceae). Heredity 82: 381–390 PubMedCrossRefGoogle Scholar
  13. Camp W. H. (1942). The Crataegus problem. Castanea 7: 51–55 Google Scholar
  14. Campbell C. S., Greene C. W. and Dickinson T. A. (1991). Reproductive biology in subfamily Maloideae (Rosaceae). Syst. Bot. 16: 333–349 CrossRefGoogle Scholar
  15. Campbell C. S., Alice L. A. and Wright W. A. (1999). Comparisons of within-population genetic variation in sexual and agamospermous Amelanchier (Rosaceae) using RAPD markers. Pl. Syst. Evol. 215: 157–167 CrossRefGoogle Scholar
  16. Campbell C. S., Evans R. C., Morgan D. R., Dickinson T. A. and Arsenault M. P. (2007). Phylogeny of subtribe Pyrinae (formerly the Maloideae, Rosaceae): limited resolution of a complex evolutionary history. Pl. Syst. Evol. 266: 119–145 CrossRefGoogle Scholar
  17. Casgrain P., Legendre P. (2004) The R Package for multivariate and spatial analysis. Montreal, QC.Google Scholar
  18. Celotti N. (1995) The pollen tube pathway and obturator in hawthorn sexual reproduction. B.Sc. Honours thesis, Biology Department, Queen's University: 58.Google Scholar
  19. Charnov E. L. (1982). The theory of sex allocation. Princeton University Press, Princeton, NJ Google Scholar
  20. Clausen J. (1954). Partial apomixis as an equilibrium system in evolution. Caryologia Suppl. 6: 469–479 Google Scholar
  21. Cruden R. W. (1977). Pollen-ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution 31: 32–46 CrossRefGoogle Scholar
  22. Cruden R. W. and Miller-Ward S. (1981). Pollen-ovule ratio, pollen size and the ratio of stigmatic area to the pollen-bearing area of the pollinator: an hypothesis. Evolution 35: 964–974 CrossRefGoogle Scholar
  23. Cruden R. W. (2000). Pollen grains: why so many. Pl. Syst. Evol. 222: 143–165 CrossRefGoogle Scholar
  24. Czapik R. (1996). Problems of apomictic reproduction in the families Compositae and Rosaceae. Folia Geobot. Phytotax. 31: 381–387 Google Scholar
  25. Dickinson T. A. and Phipps J. B. (1986). Studies in Crataegus (Rosaceae: Maloideae) XIV. The breeding system of Crataegus crus galli sensu lato in Ontario (Canada). Amer. J. Bot. 73: 116–130 CrossRefGoogle Scholar
  26. Dickinson T. A. and Campbell C. S. (1991). Population structure and reproductive ecology in the Maloideae (Rosaceae). Syst. Bot. 16: 350–362 CrossRefGoogle Scholar
  27. Dickinson T. A., Belaoussoff S., Love R. M. and Muniyamma M. (1996). North American black-fruited hawthorns: I. Variation in floral construction, breeding system correlates, and their possible evolutionary significance in Crataegus sect. Douglasii Loudon. Folia Geobot. Phytotax. 31: 355–371 Google Scholar
  28. Dickinson T. A. (1999). Species concepts in agamic complexes. In: Raamsdonk L. W. D. van, Nijs, J. C. M. den (eds) Evolution in man-made habitats, pp 319–339. Institute for Systematics & Ecology, Amsterdam Google Scholar
  29. Dickson E. E. (1995) Systematic studies of Malus section Chloromeles (Maloideae, Rosaceae). Ph.D. thesis, Department, Cornell University, 343 pp.Google Scholar
  30. Dodd M. E., Silvertown M. W. and Chase M. W. (1999). Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution 53: 732–744 CrossRefGoogle Scholar
  31. Erwin D. M. and Schorn H. E. (2000). Revision of Lyonothamnus A. Gray (Rosaceae) from the Neogene of western North America. Int. J. Pl. Sci. 161: 179–193 CrossRefGoogle Scholar
  32. Evans R. C. and Dickinson T. A. (1996). North American black-fruited hawthorns. II. Floral development of 10- and 20-stamen morphotypes in Crataegus section Douglasii. Amer. J. Bot. 83: 961–978 CrossRefGoogle Scholar
  33. Evans R. C. and Campbell C. S. (2002). The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes. Amer. J. Bot. 89: 1478–1484 Google Scholar
  34. Grant V. (1981). Plant speciation. Columbia University Press, New York Google Scholar
  35. Hardin J. W. (1973). The enigmatic chokeberries (Aronia, Rosaceae). Bull. Torrey Bot. Club 100(3): 178–184 CrossRefGoogle Scholar
  36. Hauck N. R., Yamane H., Tao R. and Iezzoni A. F. (2006). Accumulation of nonfunctional S-haplotypes results in the breakdown of gametophytic self-incompatibility in tetraploid Prunus. Genetics 172: 1191–1198 PubMedCrossRefGoogle Scholar
  37. Helfgott D. M., Francisco-Ortega J., Santos-Guerra A., Jansen R. K. and Simpson B. B. (2000). Biogeography and breeding system evolution of the woody Bencomia alliance (Rosaceae) in Macaronesia based on ITS sequence data. Syst. Bot. 25: 82–97 CrossRefGoogle Scholar
  38. Hull P. and Smart G. J. B. (1984). Variation in two Sorbus species endemic to the Isle or Arran, Scotland. Annual. Bot. 53(5): 641–648 Google Scholar
  39. Hylmö B. and Fryer J. (1999). Cotoneasters in Europe. Acta Bot. Fenn. 162: 179–184 Google Scholar
  40. Insightful_Corporation (2003) S-Plus 6.2, Seattle, WA.Google Scholar
  41. Izmaiłow R. (1986). Cyto-embryological studies on Alchemilla L. (series Calycinae Buser): II. Apomictic processes in ovules. Acta Biol. Cracov., Ser. Bot. 28: 39–64 Google Scholar
  42. Izmaiłow R. (1994). Embryo and endosperm relations at early stages of their development in Alchemilla subsect. Heliodrosium (Rosaceae). Polish Bot. Stud. 8: 61–67 Google Scholar
  43. Jankun A. and Kovanda M. (1988). Apomixis at the diploid level in Sorbus eximia. Embryological studies in Sorbus III. Preslia 60: 193–213 Google Scholar
  44. Johri B. M., Ambegaokar K. B. and Srivastava P. S. (1992). Comparative embryology of angiosperms. Springer-Verlag, Berlin Google Scholar
  45. Joly S., Starr J. R., Lewis W. H. and Bruneau A. (2006). Polyploid and hybrid evolution in roses east of the Rocky Mountains. Amer. J. Bot. 93: 412–425 Google Scholar
  46. Kalkman C. (2004). Rosaceae. In: Kubitzki, K. (eds) Flowering plants - Dicotyledons: Celastrales, Oxalidales, Rosales, Cornales, Ericales, pp 343–386. Springer, Berlin Google Scholar
  47. Kerr M. S. (2004) A phylogenetic and biogeographic analysis of Sanguisorbeae (Rosaceae), with emphasis on the Pleistocene radiation of the high Andean genus Polylepis. Thesis, Cell Biology & Molecular Genetics Department, University of Maryland.Google Scholar
  48. Kessler M. (1995). Polylepis-Wälder Boliviens: Taxa, Ökologie, Verbreitung und Geschichte. Dissertationes Botanicae 246. J. Cramer, Berlin Google Scholar
  49. Kollmann J., Steinger T. and Roy B. A. (2000). Evidence of sexuality in European Rubus (Rosaceae) species based on AFLP and allozyme analysis. Amer. J. Bot. 87: 1592–1598 CrossRefGoogle Scholar
  50. Kovanda M. (1965). On the generic concepts in the Maloideae. Preslia 37: 27–34 Google Scholar
  51. Krügel T. (1992). Zur zytologischen Struktur der Gattung Cotoneaster (Rosaceae, Maloideae) III. Beitr. Phytotax. 15: 69–86 Google Scholar
  52. Leht M. and Reier U. (1999). Origin, chromosome number and reproduction biology of Potentilla fruticosa (Rosaceae) in Estonia and Latvia. Acta Bot. Fenn. 162: 191–196 Google Scholar
  53. Leung G., Parks C. R. (2002) Isozyme analysis of Crataegus species. In: Lance R. (ed.) Cumulative analyses report of Crataegus harbisonii, Crataegus ashei and Crataegus triflora prepared for the U. S. Fish and Wildlife Service Order Number 1448-43910-0-M002, Asheville, NC, pp. 73–77.Google Scholar
  54. Lewis D. (1947). Competition and dominance of incompatibility alleles in diploid pollen. Heredity 1: 85–108 Google Scholar
  55. Liebhard R., Gianfranceschi L., Koller B., Ryder C. D., Tarchini R., Van de Weg E. and Gessler C. (2002). Development and characterisation of 140 new microsatellites in apple (Malus x domestica Borkh.). Mol. Breed. 10: 217–241 CrossRefGoogle Scholar
  56. Liljefors A. (1953). Studies on propagation, embryology and pollination in Sorbus. Acta Horti Berg. 16: 277–329 Google Scholar
  57. Liljefors A. (1955). Cytological studies in Sorbus. Acta Horti Berg. 17: 47–113 Google Scholar
  58. Lo E., Stefanovic S., Dickinson T. A. (in press), Crataegus and Mespilus (Pyreae, Rosaceae) - two genera or one? Syst. Bot. (accepted pending revision 2006-07-03).Google Scholar
  59. Love R. and Feigen M. (1978). Interspecific hybridization between native and naturalized Crataegus (Rosaceae) in western Oregon. Madroño 25: 211–217 Google Scholar
  60. Mable B. K. (2004). Polyploidy and self-compatibility: is there a connection. New Phytologist 162: 803–811 CrossRefGoogle Scholar
  61. Macklin J. A. (2001) Systematics of Crataegus ser. Coccineae. I. Delimitation of series. Ph.D. thesis, Department of Plant Sciences Department, University of Western Ontario.Google Scholar
  62. Mandryk V. Y. (1994). Embryologic investigation of Cotoneaster melanocarpus Fisch. ex Blytt (Rosaceae). Ukrayins'k. Bot. Zhurn. 51: 86–93 Google Scholar
  63. Matzk F., Meister A. and Schubert I. (2000). An efficient screen for reproductive pathways using mature seeds of monocots and dicots. Pl. J. 21: 96–108 Google Scholar
  64. McCue K.A., Havens K., Archer J., Murai M. (2001) Using demographic and genetic data for the conservation of Mespilus canescens, a rare Rosaceous shrub (abstract). Society for Conservation Biology, University of Hawaii, Hilo, Hawaii.Google Scholar
  65. Miller J. S. and Venable D. L. (2000). Polyploidy and the evolution of gender dimorphism in plants. Science 289: 2335–2338 PubMedCrossRefGoogle Scholar
  66. Mishima M., Ohmido N., Fukui M. and Yahara T. (2002). Trends in site-number change of rDNA loci during polyploid evolution in Sanguisorba (Rosaceae). Chromosoma 110: 550–558 PubMedGoogle Scholar
  67. Muniyamma M. and Phipps J. B. (1979). [Studies in Crataegus (Rosaceae: Maloideae). I.] Cytological proof of apomixis in Crataegus (Rosaceae). Amer. J. Bot. 66: 149–155 CrossRefGoogle Scholar
  68. Nelson-Jones E. B., Briggs D. and Smith A. G. (2002). The origin of intermediate species of the genus Sorbus. Theor. Appl. Genet. 105: 953–963 PubMedCrossRefGoogle Scholar
  69. Nixon K. C. and Wheeler Q. D. (1990). An amplification of the phylogenetic species concept. Cladistics 6: 211–223 CrossRefGoogle Scholar
  70. Noirot M., Couvet D. and Hamon S. (1997). Main role of self-pollination rate on reproductive allocations in pseudogamous apomicts. Theor. Appl. Genet. 95: 479–483 CrossRefGoogle Scholar
  71. Nybom H. (1996). DNA fingerprinting – a useful tool in the taxonomy of apomictic plant groups. Folia Geobot. Phytotax. 31: 295–304 Google Scholar
  72. Nylehn J., Hamre E. and Nordal I. (2003). Facultative apomixis and hybridization in arctic Potentilla section Niveae (Rosaceae) from Svalbard. Bot. J. Linn. Soc. 142: 373–381 CrossRefGoogle Scholar
  73. Oh S. H. and Potter D. (2005). Molecular phylogenetic systematics and biogeography of tribe Neillieae (Rosaceae) using DNA sequences of cpDNA, rDNA and LEAFY. Amer. J. Bot. 92: 179–192 Google Scholar
  74. Palmer E. J. (1943). The species concept in Crataegus. Chron. Bot. 7: 373–375 Google Scholar
  75. Palmer E. J. (1946). Crataegus in the northeastern and central U. S. and adjacent Canada. Brittonia 5: 471–490 CrossRefGoogle Scholar
  76. Persson Hovmalm H. A., Jepsson N., Bartish I. V. and Nybom H. (2004). RAPD analysis of diploid and tetraploid populations of Aronia points to different reproductive strategies within the genus. Hereditas (Lund) 141: 301–312 CrossRefGoogle Scholar
  77. Phipps J. B. and Muniyamma M. (1980). [Studies in Crataegus (Rosaceae: Maloideae) III.] A taxonomic revision of Crataegus (Rosaceae) in Ontario. Canad. J. Bot. 58: 1621–1699 Google Scholar
  78. Phipps J. B., Robertson K. R., Smith P. G. and Rohrer J. R. (1990). A checklist of the subfamily Maloideae (Rosaceae). Canad. J. Bot. 68: 2209–2269 Google Scholar
  79. Phipps J. B., O'Kennon R. J. and Lance R. W. (2003). Hawthorns and medlars. Timber Press, Portland, OR Google Scholar
  80. Phipps J. B. (2005). A review of hybridization in North American hawthorns. Ann. Missouri Bot. Gard. 92: 113–126 Google Scholar
  81. Potter D., Eriksson T., Evans R. C., Oh S. H., Smedmark J. E. E., Morgan D. R., Kerr M., Robertson K. R., Arsenault M. P., Dickinson T. A. and Campbell C. S. (2007). Phylogeny and classification of Rosaceae. Pl. Syst. Evol. 266: 5–43 CrossRefGoogle Scholar
  82. Ptak K. (1989). Cyto-embryological investigations on the Polish representatives of the genus Crataegus L. II. Embryology of triploid species. Acta Biol. Cracov., Ser. Bot. 31: 97–112 Google Scholar
  83. Purich M. A. (2005) Characterizing hybridization between native and non-native Crataegus species. Thesis, Botany Department, University of Toronto.Google Scholar
  84. Ramsey J. and Schemske D. W. (1998). Pathways, mechanisms and rates of polyploid formation in flowering plants. Annual Rev. Ecol. Syst. 29: 467–501 CrossRefGoogle Scholar
  85. Ranney T. G., Eaker T. A., Lynch N. P. and Olsen R. T. (2004). Reproductive pathways among flowering crabapples. In: Reed, S. M. (eds) SNA Research Conference Vol. 49 - Plant Breeding & Evaluation Section, pp. Southern Nursery Association, Inc., Atlanta, GA (http://www.sna.org/research/04proceedings/04proceedingshtmls/ResProcSec1237.html). Accessed on 19 September 2006 Google Scholar
  86. Robertson A., Newton A. C. and Ennos R. A. (2004). Multiple hybrid origins, genetic diversity and population genetic structure of two endemic Sorbus taxa on the Isle of Arran, Scotland. Mol. Ecol. 13: 123–134 PubMedCrossRefGoogle Scholar
  87. Robertson K. R. (1974) The genera of Rosaceae in the southeastern United States. J. Arnold Arbor. 55: 303–332, 344–401, 611–662.Google Scholar
  88. Robinson W. A. and Partanen C. R. (1980). Experimental taxonomy in the genus Amelanchier 1. A new look at the chromosome numbers of the Amelanchier species growing in the Northeastern United States. Rhodora 82: 483–493 Google Scholar
  89. Schmidt-Lebuhn A. N., Kumar M. and Kessler M. (2006). An assessment of the genetic population structure of two species of Polylepis Ruiz & Pav. (Rosaceae) in the Chilean Andes. Flora 201: 317–325 Google Scholar
  90. Senanayake Y. D. A. and Bringhurst R. S. (1967). Origin of Fragaria polyploids. I. Cytological analysis. Amer. J. Bot. 54: 221–228 CrossRefGoogle Scholar
  91. Smedmark J. E. E. and Eriksson T. (2002). Phylogenetic relationships of Geum (Rosaceae) and relatives inferred from the nrITS and trnL-trnF regions. Syst. Bot. 27: 303–317 Google Scholar
  92. Smedmark J. E. E., Eriksson T., Evans R. C. and Campbell C. S. (2003). Ancient allopolyploid speciation in Geinae (Rosaceae): Evidence from nuclear granule-bound starch synthase (GBSSI) gene sequences. Syst. Biol. 52: 374–385 PubMedGoogle Scholar
  93. Smith P. G., Phipps J. B., Dickinson T. A. (1980) Accumulated heat in relation to Crataegus flowering (abstract, contributed paper). 2nd international congress of systematic and evolutionary biology, Vancouver, BC, University of British Columbia.Google Scholar
  94. Smith P. G. and Phipps J. B. (1988). Studies in Crataegus (Rosaceae, Maloideae), XIX. Breeding behavior in Ontario Crataegus series Rotundifoliae. Canad. J. Bot. 66: 1914–1923 Google Scholar
  95. Stebbins G. L. (1980). Polyploidy in plants: unsolved problems and prospects. In: Lewis, W. H. (eds) Polyploidy - biological relevance, pp 495–520. Plenum Press, New York Google Scholar
  96. Talent N. and Dickinson T. A. (2005). Polyploidy in Crataegus and Mespilus (Rosaceae, Maloideae): evolutionary inferences from flow cytometry of nuclear DNA amounts. Canad. J. Bot. 83: 1268–1304 CrossRefGoogle Scholar
  97. Talent N. and Dickinson T. A. (2007a). Endosperm formation in aposporous Crataegus L. (Rosaceae, Spiraeoideae, tribe Pyreae): parallels to Ranunculaceae and Poaceae. New Phytologist 173: 231–249 CrossRefGoogle Scholar
  98. Talent N., Dickinson T. A. (2007b) Apomixis and hybridization in Rosaceae subtribe Pyrineae Dumort.: a new tool promises new insights. In: Grossniklaus U., Hörandl E., Sharbel T., van Dijk P. (eds.) Apomixis: evolution, mechanisms and perspectives, Gantner Verlag, Ruggell, Liechtenstein.Google Scholar
  99. Talent N., Dickinson T. A. (2007c) Ploidy level increases and decreases in seeds from crosses between sexual diploids and dpomictic triploids and tetraploids in Crataegus L. (Rosdceae, spiraeoideae, tribe Pyreae). Canad. J. Bot. 85.Google Scholar
  100. Tavaud M., Zanetto A., David J. L., Laigret F. and Dirlewanger E. (2004). Genetic relationships between diploid and allotetraploid cherry species (Prunus avium, Prunus xgondouinii and Prunus cerasus). Heredity 93: 631–638 PubMedCrossRefGoogle Scholar
  101. Vamosi J. C. and Dickinson T. A. (2006). Polyploidy and diversification: a phylogenetic investigation in Rosaceae. Int. J. Pl. Sci. 167: 349–358 CrossRefGoogle Scholar
  102. Weber H. E. (1999). The present state of taxonomy and mapping of blackberries (Rubus) in Europe. Acta Bot. Fenn. 162: 161–168 Google Scholar
  103. Weber J. E. and Campbell C. S. (1989). Breeding system of a hybrid between a sexual and an apomictic species of Amelanchier, shadbush (Rosaceae, Maloideae). Amer. J. Bot. 73: 341–347 CrossRefGoogle Scholar
  104. Wells T. C. and Phipps J. B. (1989). Studies in Crataegus (Rosaceae: Maloideae). XX. Interserial hybridization between Crataegus monogyna (series Oxyacanthae) and Crataegus punctata (series Punctatae) in southern Ontario. Canad. J. Bot. 67: 2465–2472 Google Scholar
  105. Werlemark G. (2000). Evidence of apomixis in hemisexual dogroses, Rosa section Caninae. Sexual Plant Reprod. 12: 353–359 CrossRefGoogle Scholar
  106. Wissemann V. and Ritz C. M. (2005). The genus Rosa (Rosoideae, Rosaceae) revisited: molecular analysis of nrITS-1 and atpB-rbcL intergenic spacer (IGS) versus conventional taxonomy. Bot. J. Linn. Soc. 147: 275–290 CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Green Plant Herbarium (TRT), Department of Natural HistoryRoyal Ontario MuseumTorontoCanada
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoCanada

Personalised recommendations