Skip to main content
Log in

Genetic analysis of Pinus strobus and Pinus monticola populations from Canada using ISSR and RAPD markers: development of genome-specific SCAR markers

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Pinus is the largest genus of conifers, containing over 100 species and is also the most widespread genus in the Northern Hemisphere. Pinus monticola and P. strobus are two closely related and economically important species in Canada. Morphological and allometric characteristics have been used to assess genetic variation within these two species but these markers are not reliable due to ecological variations. The purpose of the present study was to determine the level of genetic diversity within and among Canadian populations from the two species using molecular markers and to identify and characterize genome-specific inter-simple sequence repeats (ISSR) and random amplified polymorphic DNA (RAPD) markers. The level of genetic variation among populations was much lower for P. monticola than P. strobus. For both species, the among population variation values were smaller than within population variation. The populations from P. monticola were more closely genetically related than populations from P. strobus based on ISSR and RAPD analyses. Six ISSR and four RAPD markers specific to either P. monticola or P. strobus were cloned and sequenced. Primer pairs flanking these specific sequences were designed and genome specific SCAR markers for P. monticola and P. strobus were developed and characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong J. S., Gibbs A. J., Peakall R., Weiller G. (1994) The RAPDistance Package. 2005.

  • Barnes B. V. (1967) Phenotypic variation associated with elevation in western white pine. Forest Sci. 13: 14, 357–364.

    Google Scholar 

  • Beaulieu J. and Simon J. P. (1994). Genetic structure and variability in Pinus strobus in Québec. Canad. J. For. Res. 24: 1726–1733

    Google Scholar 

  • Brown A. H. D. (1979). Enzyme polymorphism in plant populations. Theor. Population Biol. 15: 1–42

    Article  Google Scholar 

  • Buchert G. P. (1994). Genetics of white pine and implications for management and conservation. The Forestry Chronicle 70: 427–434

    Google Scholar 

  • DeVerno L. L. and Mosseler A. (1997). Genetic variation in red pine (Pinus resinosa) revealed by RAPD and RAPD-RFLP analysis. Canad. J. For. Res 27: 1316–1320

    Article  CAS  Google Scholar 

  • Echt C. S., MayMarquardt P., Hseih M. and Zahorchak R. (1996). Characterization of microsatellite markers in eastern white pine. Genome 39: 1102–1108

    PubMed  CAS  Google Scholar 

  • Echt C. S. and Nelson C. D. (1997). Linkage mapping and genome length in eastern white pine (Pinus strobus L.). Theor. Appl. Genet. 94: 1031–1037

    Article  CAS  Google Scholar 

  • Eckert R. T., Joly R. J. and Neale D. B. (1981). Genetics of isozyme variants and linkage relationships among allozyme loci in 35 eastern white pine clones. Canad. J. For. Res. 11: 573–579

    Article  CAS  Google Scholar 

  • Flint R. F. (1945) Glacial map of North America. Spec. Pap. Geol. Soc. Am. No. 60.

  • Fang D. Q. and Roose M. L. (1997). Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theor. Appl. Genet. 95: 408–417

    Article  CAS  Google Scholar 

  • Gernandt D. S., Lopez G. G., Garcia S. O. and Liston A. (2005). Phylogeny and classification of Pinus. Taxon 54: 29–42

    Article  Google Scholar 

  • Grotkopp E., Rejmanek M., Sanderson M. J. and Rost T. L. (2004). Evolution of genome size in pines (Pinus) and its life-history correlates: Supertree analyses. Evolution 58: 1705–1729

    PubMed  CAS  Google Scholar 

  • Jain T. B., Graham R. T. and Morgan P. (2004). Western white pine growth relative to forest openings. Canad. J. For. Res. 34: 2187

    Article  Google Scholar 

  • Kim M. S., Brunsfeld S. J., McDonald G. I. and Klopfenstein E. (2003). Effect of white pine blister rust (Cronartium ribicola) and rust-resistance breeding on genetic variation in western white pine (Pinus monticola). Theor. Appl. Genet. 106: 1004–1010

    PubMed  Google Scholar 

  • Mantel M. (1967). The detection of disease clustering and a generalized regression approach. Cancer Res. 27: 209–220

    PubMed  CAS  Google Scholar 

  • Nagaoka T. and Ogihara Y. E. (1997). Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor. Appl. Genet. 94: 597–602

    Article  CAS  Google Scholar 

  • Nkongolo K. K., Michael P. and Demers T. (2005). Application of ISSR, RAPD, and cytological markers to the certification of Picea mariana, P. glauca, and P. engelmannii trees, and their putative hybrids. Genome 48: 302–311

    PubMed  CAS  Google Scholar 

  • Nkongolo K. K., Michael P. and Gratton W. S. (2002). Identification and characterization of RAPD markers inferring genetic relationships among Pine species. Genome 45: 51–58

    Article  PubMed  CAS  Google Scholar 

  • Nkongolo K. K. (1999). RAPD and cytological analyses of Picea spp. from different provenances: Genomic relationships among taxa. Hereditas 130: 137–144

    Article  Google Scholar 

  • Nkongolo K. K., Deverno L. and Michael P. (2003). Genetic validation and characterization of RAPD markers differentiating black and red spruces: molecular certification of spruce trees and hybrids. Pl. Syst. Evol. 236: 151–163

    Article  CAS  Google Scholar 

  • Qian W., Ge S. and Hong D. Y. (2001). Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers. Theor. Appl. Genet. 102: 440–449

    Article  CAS  Google Scholar 

  • Quinby P. A. (2000) An overview of the conservation of old-growth red and eastern white pine forest in Ontario. Report No. 23, Ancient Forest Research Report.

  • Raina S. N., Rani V., Kojima T. and Ogihara Y. (2001). RAPD and ISSR fingerprints as useful genetic markers for analyis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome 44: 763–772

    Article  PubMed  CAS  Google Scholar 

  • Rajora O. P., DeVerno L., Mosseler A. and Innes D. J. (1998). Genetic diversity and population structure of disjunct Newfoundland and central Ontario populations of eastern white pine. Canad. J. Bot. 76: 500

    Article  Google Scholar 

  • Rehfeldt G. E. (1979). Ecotypic differentiation in populations of Pinus monticola in North Idaho- Myth or reality?. Amer. Naturalist 114: 627–636

    Article  Google Scholar 

  • Rehfeldt G. E., Hoff R. J. and Steinhoff R. J. (1984). Geographic patterns of genetic variation in Pinus monticola. Bot. Gaz. 145: 229–239

    Article  Google Scholar 

  • Rus-Kortekaas W., Smulders M. J. M., Arens P., Vosman B. (1994) Direct comparison of levels of genetic variation in tomato detected by a GACAcontaining microsatellite probe and by random amplified polymorphic DNA. Genome: 375–381.

  • Ryu J. B. (1982) Genetic structure of Pinus strobus L. based on foliar isozymes from 27 provenances. Ph.D., University of New Hampshire, Durham.

  • Saitou N., Nei M. (1987) The neighbor-joining method:A new method for reconstructing phylogenetic trees. Molec. Biol. Evol. pp. 406–425.

  • Sambrook J., Fritsch E. F. and Maniatis T. (1989). Molecular cloning: a laboratory manual. 2nd edn. Cold Springs Harbor Laboratory, Long Island, New York

    Google Scholar 

  • Sanchez de la Hoz M. P. S., Davila J. A., Loarce Y. and Ferrer E. (1996). Simple sequence repeat primers used in polymerase chain reaction amplifications to study genetic diversity in barley. Genome 39: 112–117

    PubMed  CAS  Google Scholar 

  • Steinhoff R. J., Joyce D. G. and Fins L. (1983). Isozyme variation in Pinus monticola. Canad. J. For. Res. 13: 1122–1132

    Article  Google Scholar 

  • Syring J., Willyard A., Cronn R. and Liston A. (2005). Evolutionary relationships among Pinus (Pinaceae) subsections inferred from multiple low-copy nuclear loci. Amer. J. Bot. 92: 2086–2100

    Google Scholar 

  • Vidakovic M. (1991) Conifers morphology and variation, Translated from Croatian by Maja Soljan. Croatia, Graficki Zavod Hrvastske.

  • Williams J. G. K., Kubelik A. R., Livak K. J., Rafalski J. A. and Tingey S. V. (1990). DNA polymorphism amplified by arbitrary primers are useful as genetic markers. Nucl. Acids Res. 18: 6531–6535

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Nkongolo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehes, M., Nkongolo, K. & Michael, P. Genetic analysis of Pinus strobus and Pinus monticola populations from Canada using ISSR and RAPD markers: development of genome-specific SCAR markers. Plant Syst. Evol. 267, 47–63 (2007). https://doi.org/10.1007/s00606-007-0534-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-007-0534-1

Keywords

Navigation