A duplication of gcyc predates divergence within tribe Coronanthereae (Gesneriaceae): Phylogenetic analysis and evolution

Abstract

Recent investigations in Gesneriaceae have indicated that the cycloidea homolog, gcyc, remains functional at the DNA level and rates of sequence divergence in this gene are not statistically different across all taxa regardless of floral symmetry. A duplication of gcyc has been detected within Coronanthereae, a tribe that has phylogenetic affinities to subfamily Gesnerioideae and includes two genera with radially symmetrical corollas. Duplication of gcyc has been detected in all Coronanthereae except Sarmienta. All paralogs appear functional at the DNA level. Likewise, there is no increased sequence divergence between the two copies, nor between species with radially symmetrical flowers to those with bilateral symmetry. The duplication of gcyc in Coronanthereae is most likely a result of polyploidy since Coronanthereae have the highest chromosome counts of all Gesneriaceae.

This is a preview of subscription content, access via your institution.

References

  1. S. Ahn S. D. Tanksley (1993) ArticleTitleComparative linkage maps of the rice and maize genomes Proc. Natl. Acad. Sci. USA 90 7980–7984 Occurrence Handle8103599 Occurrence Handle1:CAS:528:DyaK3sXlslGiu7Y%3D Occurrence Handle10.1073/pnas.90.17.7980

    PubMed  CAS  Article  Google Scholar 

  2. J. Almeida M. Rocheta L. Galego (1997) ArticleTitleGenetic control of flower shape in Antirrhinum majus Development 124 1387–1392 Occurrence Handle9118809 Occurrence Handle1:CAS:528:DyaK2sXivFKht7s%3D

    PubMed  CAS  Google Scholar 

  3. The Angiosperm Phylogeny Group II. (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc. 141: 399–436.

    Google Scholar 

  4. G. S. Bailey T. M. Poulter P. A. Stockwell (1978) ArticleTitleGene duplication in tetraploid fish: model for gene silencing at unlinked duplicated loci Proc. Natl. Acad. Sci. USA 75 5575–5579 Occurrence Handle281706 Occurrence Handle1:STN:280:DyaE1M%2FnsVylsQ%3D%3D Occurrence Handle10.1073/pnas.75.11.5575

    PubMed  CAS  Article  Google Scholar 

  5. D. A. Baum (1998) ArticleTitleThe evolution of plant development Curr. Opin. Pl. Biol. 1 79–86 Occurrence Handle1:STN:280:DyaK1M7mslOhug%3D%3D Occurrence Handle10.1016/S1369-5266(98)80132-5

    CAS  Article  Google Scholar 

  6. D. A. Baum K. J. Sytsma P. C. Hoch (1994) ArticleTitleA phylogenetic analysis of Epilobium (Onagraceae) based on nuclear ribosomal DNA sequences Syst. Bot. 19 363–388 Occurrence Handle10.2307/2419763

    Article  Google Scholar 

  7. J. P. Bielawski Z. Yang (2001) ArticleTitlePositive and negative selection in the DAZ gene family Molec Biol. Evol. 18 523–529 Occurrence Handle11264403 Occurrence Handle1:CAS:528:DC%2BD3MXis1eisLk%3D

    PubMed  CAS  Google Scholar 

  8. B. L. Burtt (1963) ArticleTitleStudies in the Gesneriaceae of the Old World. XXIV. Tentative keys to the tribes and genera Notes Roy. Bot. Gard. Edinb. 24 205–220

    Google Scholar 

  9. B. L. Burtt (1998) Climatic accomodations and phytogeography of the Gesneriaceae of the Old World P. Mathew M. Sivadasan (Eds) Diversity and taxonomy of tropical flowering plants Mentor Books Calicut

    Google Scholar 

  10. B. L. Burtt (1999) ArticleTitleOld World Gesneriaceae VI. Six miscellaneous notes Edinb. J. Bot. 56 371–379 Occurrence Handle10.1017/S0960428600001335

    Article  Google Scholar 

  11. B. L. Burtt H. Wiehler (1995) ArticleTitleClassification of the family Gesneriaceae Gesneriana 1 1–4

    Google Scholar 

  12. H. L. Citerne M. Möller Q. C. B. Cronk (2000) ArticleTitleDiversity of cycloidea-like genes in Gesneriaceae in relation to floral symmetry Ann. Bot. 86 167–176 Occurrence Handle1:CAS:528:DC%2BD3cXktlSntLw%3D Occurrence Handle10.1006/anbo.2000.1178

    CAS  Article  Google Scholar 

  13. E. S. Coen (1996) ArticleTitleFloral symmetry EMBO Journal 15 6777–6788 Occurrence Handle9003753 Occurrence Handle1:CAS:528:DyaK2sXosFaqtg%3D%3D

    PubMed  CAS  Google Scholar 

  14. Coen E. S., Nugent J. M. (1994) Evolution of flowers and inflorescences. Development Supplement: 107–116.

  15. E. S. Coen J. M. Nugent D. Luo D. Bradley P. Cubas M. Chadwick L. Copsey R. Carpenter (1995) ArticleTitleEvolution of floral symmetry Phil. Trans. Roy. Soc. London B 350 35–38

    Google Scholar 

  16. Q. C. B. Cronk (2002) Perspectives and paradigms in plant evo-devo Q. C. B. Cronk R. M. Bateman J. A. Hawkins (Eds) Developmental genetics and plant evolution Taylor and Francis New York 1–14

    Google Scholar 

  17. Q. C. B. Cronk M. Möller (1997) ArticleTitleGenetics of floral symmetry revealed Trends Ecol. Evol. 12 85–86 Occurrence Handle10.1016/S0169-5347(97)01028-8

    Article  Google Scholar 

  18. P. Cubas (2002) Role of TCP genes in the evolution of morphological characters in angiosperms Q. C. B. Cronk R. M. Bateman J. A. Hawkins (Eds) Developmental genetics and plant evolution Taylor and Francis New York 247–266

    Google Scholar 

  19. P. Cubas E. Coen J. M. M. Zapater (2001) ArticleTitleAncient asymmetries in the evolution of flowers Curr. Biol. 11 1050–1052 Occurrence Handle11470410 Occurrence Handle1:CAS:528:DC%2BD3MXltlOgs7c%3D Occurrence Handle10.1016/S0960-9822(01)00295-0

    PubMed  CAS  Article  Google Scholar 

  20. P. Cubas C. Vincent E. Coen (1999) ArticleTitleAn epigenetic mutation responsible for natural variation in floral symmetry Nature 401 157–161 Occurrence Handle10490023 Occurrence Handle1:CAS:528:DyaK1MXlvFKhu7Y%3D Occurrence Handle10.1038/43657

    PubMed  CAS  Article  Google Scholar 

  21. M. J. Donoghue R. H. Ree D. A. Baum (1998) ArticleTitlePhylogeny and the evolution of flower symmetry in the Asteridae Trends Pl. Sci. 3 311–317 Occurrence Handle10.1016/S1360-1385(98)01278-3

    Article  Google Scholar 

  22. E. Emshwiller J. J. Doyle (1999) ArticleTitleChloroplast-expressed glutamine synthetase (ncpGS): potential utility for phylogenetic studies with an example from Oxalis (Oxalidaceae) Molec Phylogenet Evol. 12 310–319 Occurrence Handle10413625 Occurrence Handle1:CAS:528:DyaK1MXksVOju7c%3D Occurrence Handle10.1006/mpev.1999.0613

    PubMed  CAS  Article  Google Scholar 

  23. P. K. Endress (1997) Evolutionary biology of flowers: prospects for the next century K. Iwatuski P. H. Raven (Eds) Evolution and diversification Springer Tokyo 99–119

    Google Scholar 

  24. J. Felsenstein (1981) ArticleTitleEvolutionary trees from DNA sequences: a maximum likelihood approach J. Molec. Evol. 17 368–376 Occurrence Handle7288891 Occurrence Handle1:CAS:528:DyaL3MXls1Cisr8%3D Occurrence Handle10.1007/BF01734359

    PubMed  CAS  Article  Google Scholar 

  25. J. Felsenstein (1985) ArticleTitleConfidence limits on phylogenies: an approach using the bootstrap Evolution 39 783–791 Occurrence Handle10.2307/2408678

    Article  Google Scholar 

  26. A. C. M. Gillies P. Cubas E. S. Coen R. J. Abbott (2002) NoChapterTitle Q. C. B. Cronk R. M. Bateman J. A. Hawkins (Eds) Developmental genetics and plant evolution Taylor and Francis New York 233–246

    Google Scholar 

  27. N. Goldman (1993) ArticleTitleStatistical tests of models of DNA substitution J. Molec. Evol. 36 182–198 Occurrence Handle7679448 Occurrence Handle1:CAS:528:DyaK3sXps1Cmsw%3D%3D Occurrence Handle10.1007/BF00166252

    PubMed  CAS  Article  Google Scholar 

  28. N. Goldman Z. Yang (1994) ArticleTitleA codon-based model of nucleotide substitution for protein-coding DNA sequences Molec. Biol. Evol. 11 725–736 Occurrence Handle7968486 Occurrence Handle1:CAS:528:DyaK2cXmt1eit70%3D

    PubMed  CAS  Google Scholar 

  29. M. Hasegawa H. Kishino T. Yano (1985) ArticleTitleDating of the human-ape splitting by a molecular clock J. Molec. Evol. 22 160–174 Occurrence Handle3934395 Occurrence Handle1:CAS:528:DyaL2MXmtFSns7g%3D Occurrence Handle10.1007/BF02101694

    PubMed  CAS  Article  Google Scholar 

  30. T. Helentjaris D. Weber S. Wright (1988) ArticleTitleIdentification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms Genetics 118 353–363 Occurrence Handle1:CAS:528:DyaL1cXhs1amsr8%3D Occurrence Handle17246413

    CAS  PubMed  Google Scholar 

  31. L. C. Hileman D. A. Baum (2003) ArticleTitleWhy do paralogs persist? Molecular evolution of CYCLOIDEA and related floral symmetry genes in Antirrhineae (Veronicaceae) Molec. Biol. Evol. 20 591–600 Occurrence Handle12679544 Occurrence Handle1:CAS:528:DC%2BD3sXkvFCns7k%3D Occurrence Handle10.1093/molbev/msg063

    PubMed  CAS  Article  Google Scholar 

  32. L. C. Hileman E. M. Kramer D. A. Baum (2003) ArticleTitleDifferential regulation of symmetry genes and the evolution of novel floral morphologies Proc. Natl. Acad. Sci., USA 100 12814–12819 Occurrence Handle14555758 Occurrence Handle1:CAS:528:DC%2BD3sXoslKntbY%3D Occurrence Handle10.1073/pnas.1835725100

    PubMed  CAS  Article  Google Scholar 

  33. J. P. Huelsenbeck B. Rannala (1997) ArticleTitlePhylogenetic methods come of age: testing hypotheses in an evolutionary context Science 276 227–232 Occurrence Handle9092465 Occurrence Handle1:CAS:528:DyaK2sXisFWgsLY%3D Occurrence Handle10.1126/science.276.5310.227

    PubMed  CAS  Article  Google Scholar 

  34. J. P. Huelsenbeck F. Ronquist (2001) ArticleTitleMRBAYES: Bayesian inference of phylogeny Bioinformatics 17 754–755 Occurrence Handle11524383 Occurrence Handle1:STN:280:DC%2BD3MvotV2isw%3D%3D Occurrence Handle10.1093/bioinformatics/17.8.754

    PubMed  CAS  Article  Google Scholar 

  35. D. Luo R. Carpenter C. Vincent L. Copsey E. Coen (1996) ArticleTitleOrigin of floral asymmetry in Antirrhinum Nature 383 794–799 Occurrence Handle8893002 Occurrence Handle1:CAS:528:DyaK28XmsF2qsb4%3D Occurrence Handle10.1038/383794a0

    PubMed  CAS  Article  Google Scholar 

  36. D. Luo R. Carpenter L. Copsey C. Vincent J. Clark E. Coen (1999) ArticleTitleControl of organ asymmetry in flowers of Antirrhinum Cell 99 367–376 Occurrence Handle10571179 Occurrence Handle1:CAS:528:DyaK1MXns1egsL0%3D Occurrence Handle10.1016/S0092-8674(00)81523-8

    PubMed  CAS  Article  Google Scholar 

  37. D. R. Maddison W. P. Maddison (2000) MacClade 4.0: Analysis of phylogeny and character evolution. Version 4.0 Sinauer Associates Sunderland, Massachusetts

    Google Scholar 

  38. V. Mayer M. Möller M. Perret A. Weber (2003) ArticleTitlePhylogenetic position and generic differentiation of Epithematae (Gesneriaceae) inferred from plastid DNA sequence data Amer. J. Bot. 90 321–329 Occurrence Handle1:CAS:528:DC%2BD3sXitVKjsbo%3D

    CAS  Google Scholar 

  39. M. Möller Q. C. B. Cronk (1997) ArticleTitleOrigin and relationships of Saintpaulia (Gesneriaceae) based on ribosomal DNA internal transcribed spacer (ITS) sequences Amer. J. Bot. 84 956–965 Occurrence Handle10.2307/2446286

    Article  Google Scholar 

  40. M. Möller M. Clokie P. Cubas Q. C. B. Cronk (1999) Integrating molecular phylogenies and developmental genetics: a Gesneriaceae case study P. M. Hollingsworth R. M. Bateman R. J. Gornall (Eds) Molecular systematics and plant evolution Taylor and Francis London 375–402

    Google Scholar 

  41. M. Nei A. K. Roychoudhury (1973) ArticleTitleProbability of fixation of nonfunctional genes at duplicate loci Amer. Naturalist 107 362–372 Occurrence Handle10.1086/282840

    Article  Google Scholar 

  42. S. Ohno (1970) Evolution by gene duplication Springer Heidelberg

    Google Scholar 

  43. T. Ohta (1988) ArticleTitleEvolution by gene duplication and compensatory advantageous mutations Genetics 120 841–847 Occurrence Handle3224809 Occurrence Handle1:STN:280:DyaL1M7jsl2isQ%3D%3D

    PubMed  CAS  Google Scholar 

  44. R. G. Olmstead J. D. Palmer (1994) ArticleTitleChloroplast DNA systematics: a review of methods and data analysis Amer. J. Bot. 81 1205–1224 Occurrence Handle1:CAS:528:DyaK2MXpvVCntA%3D%3D Occurrence Handle10.2307/2445483

    CAS  Article  Google Scholar 

  45. M. Perret A. Chautems R. Spichiger G. Kite V. Savolainen (2003) ArticleTitleSystematics and evolution of tribe Sinningieae (Gesneriaceae): evidence from phylogenetic analyses of six plastid DNA regions and nuclear ncpGS Amer. J. Bot. 90 445–460 Occurrence Handle1:CAS:528:DC%2BD3sXivFegsrk%3D

    CAS  Google Scholar 

  46. D. Posada K. A. Crandall (1998) ArticleTitleModeltest: testing the model of DNA substitution Bioinformatics 14 817–818 Occurrence Handle9918953 Occurrence Handle1:CAS:528:DyaK1MXktlCltw%3D%3D Occurrence Handle10.1093/bioinformatics/14.9.817

    PubMed  CAS  Article  Google Scholar 

  47. P. A. Reeves R. G. Olmstead (1998) ArticleTitleEvolution of novel morphological and reproductive traits in a clade containing Antirrhinum majus (Scrophulariaceae) Amer. J. Bot. 85 1047–1056 Occurrence Handle10.2307/2446338

    Article  Google Scholar 

  48. M. P. Running (1997) ArticleTitleMaking asymmetric flowers Curr. Biol. 7 R89–R91 Occurrence Handle9081671 Occurrence Handle1:CAS:528:DyaK2sXhtlKgtL4%3D Occurrence Handle10.1016/S0960-9822(06)00044-3

    PubMed  CAS  Article  Google Scholar 

  49. M. P. Simmons H. Ochoterena (2000) ArticleTitleGaps as characters in sequence-based phylogenetic analyses Syst. Biol. 49 369–381 Occurrence Handle12118412 Occurrence Handle1:STN:280:DC%2BD38zntlKjtg%3D%3D Occurrence Handle10.1080/10635159950173889

    PubMed  CAS  Article  Google Scholar 

  50. L. E. Skog (1984) ArticleTitleA review of chromosome numbers in the Gesneriaceae Selbyana 7 252–273

    Google Scholar 

  51. J. F. Smith (1996) ArticleTitleTribal relationships within the Gesneriaceae: a cladistic analysis of morphological data Syst. Bot. 21 497–514 Occurrence Handle10.2307/2419611

    Article  Google Scholar 

  52. J. F. Smith (2000) ArticleTitleAn assessment of three data sets in phylogenetic analysis: Tribal relationships within the Gesneriaceae as a model Pl. Syst. Evol. 221 179–198 Occurrence Handle10.1007/BF01089293

    Article  Google Scholar 

  53. Smith J. F., Funke M. M. (2005) A molecular phylogenetic analysis of Coronantheroideae (Gesneriaceae). p. 166. XVII International Botanical Congress.

  54. Smith J. F., Hileman L. C., Powell M., Baum D. A. (2004a) Evolution of gcyc, a Gesneriaceae homolog of CYCLOIDEA, within subfamily Gesnerioideae (Gesneriaceae). Molec. Phylogenet. Evol. 31: 765–779.

    Google Scholar 

  55. Smith J. F., Draper S. B., Hileman L. C., Baum D. A. (2004b) A phylogenetic analysis within tribes Gloxinieae and Gesnerieae (Gesnerioideae: Gesneriaceae). Syst. Bot. 29: 947–958.

    Google Scholar 

  56. J. F. Smith K. J. Sytsma J. S. Shoemaker R. L. Smith (1992) ArticleTitleA qualitative comparison of total cellular DNA extraction protocols Phytochem. Bull. 23 2–9

    Google Scholar 

  57. J. F. Smith J. C. Wolfram K. D. Brown C. L. Carroll D. S. Denton (1997) ArticleTitleTribal relationships in the Gesneriaceae: Evidence from DNA sequences of the chloroplast gene ndhF Ann. Missouri Bot. Gard. 84 50–66 Occurrence Handle10.2307/2399953

    Article  Google Scholar 

  58. D. L. Swofford (2000) PAUP* Phylogenetic Analysis Using Parsimony (* and other methods). Vers. 10 Sinauer Associates Sunderland, Massachusetts

    Google Scholar 

  59. G. Theißen (2000) ArticleTitleEvolutionary developmental genetics of floral symmetry: the revealing power of Linnaeus' monstrous flower BioEssays 22 209–213 Occurrence Handle10684579 Occurrence Handle10.1002/(SICI)1521-1878(200003)22:3<209::AID-BIES1>3.0.CO;2-J

    PubMed  Article  Google Scholar 

  60. J. B. Walsh (1995) ArticleTitleHow often do duplicated genes evolve new functions? Genetics 139 421–428 Occurrence Handle7705642 Occurrence Handle1:STN:280:DyaK2M3itVKrsg%3D%3D

    PubMed  CAS  Google Scholar 

  61. C.-N. Wang M. Möller Q. C. B. Cronk (2004) ArticleTitlePhylogenetic position of Titanotrichum oldhamii (Gesneriaceae) inferred from four different gene regions Syst. Bot. 29 407–418 Occurrence Handle10.1600/036364404774195593

    Article  Google Scholar 

  62. A. Weber (2004) Gesneriaceae K. Kubitzki (Eds) The families and genera of vascular plants. Vol 7. Dicotyledons. Lamiales Springer Berlin

    Google Scholar 

  63. H. Wiehler (1983) ArticleTitleA synopsis of the neotropical Gesneriaceae Selbyana 6 1–249

    Google Scholar 

  64. Z. Yang (1994) ArticleTitleEstimating the pattern of nucleotide substitution J. Molec. Evol. 39 105–111 Occurrence Handle8064867

    PubMed  Google Scholar 

  65. Z. Yang (1998) ArticleTitleLikelihood ratio tests for detecting positive selection and application to primate lysozyme evolution Molec. Biol. Evol. 15 568–573 Occurrence Handle9580986 Occurrence Handle1:CAS:528:DyaK1cXislensL4%3D

    PubMed  CAS  Google Scholar 

  66. Z. Yang (2000) Phylogenetic analysis by maximum likelihood (PAML). Version 3.0 University College London London

    Google Scholar 

  67. Z. Yang R. Nielsen (1998) ArticleTitleSynonymous and nonsynonymous rate variation in nuclear genes of mammals J. Molec. Evol. 46 409–418 Occurrence Handle9541535 Occurrence Handle1:CAS:528:DyaK1cXitlSgu7w%3D Occurrence Handle10.1007/PL00006320

    PubMed  CAS  Article  Google Scholar 

  68. Z. Yang N. Goldman A. Friday (1995) ArticleTitleMaximum likelihood trees from DNA sequences: a peculiar statistical estimation problem Syst. Biol. 44 384–399 Occurrence Handle10.2307/2413599

    Article  Google Scholar 

  69. E. A. Zimmer E. H. Roalson L. E. Skog J. K. Boggan A. Indurm (2002) ArticleTitlePhylogenetic relationships in the Gesnerioideae (Gesneriaceae) based on nrDNA ITS and cpDNA trnL-F and trnE-T spacer region sequences Amer. J. Bot. 89 296–311 Occurrence Handle1:CAS:528:DC%2BD3sXisleitg%3D%3D

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. F. Smith.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smith, J.F., Funke, M.M. & Woo, V.L. A duplication of gcyc predates divergence within tribe Coronanthereae (Gesneriaceae): Phylogenetic analysis and evolution. Plant Syst. Evol. 261, 245–256 (2006). https://doi.org/10.1007/s00606-006-0445-6

Download citation

Keywords

  • Gesneriaceae
  • Coronanthereae
  • paralogs
  • gcyc
  • floral symmetry
  • phylogeny
  • polyploidy