Skip to main content
Log in

Radial symmetry of minimizers to the weighted p-Dirichlet energy

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

Let \(\mathbb {A}=\{z: r< |z|<R\}\) and \(\mathbb {A}^*=\{z: r^*<|z|<R^*\}\) be annuli in the complex plane. Let \(p\in [1,2]\) and assume that \(\mathcal {H}^{1,p}(\mathbb {A},\mathbb {A}^*)\) is the class of Sobolev homeomorphisms between \(\mathbb {A}\) and \(\mathbb {A}^*\), \(h:\mathbb {A}\xrightarrow []{{}_{\!\!\text {onto\,\,}\!\!}}\mathbb {A}^*\). Then we consider the following Dirichlet type energy of h:

$$\begin{aligned}\mathscr {F}_p[h]=\int _{\mathbb {A}}\frac{\Vert Dh\Vert ^p}{|h|^p}, 1\leqslant p\leqslant 2.\end{aligned}$$

We prove that this energy integral attains its minimum, and the minimum is a certain radial diffeomorphism \(h:\mathbb {A}\xrightarrow []{{}_{\!\!\text {onto\,\,}\!\!}}\mathbb {A}^*\), provided a radial diffeomorphic minimizer exists. If \(p>1\) then such diffeomorphism exists always. If \(p=1\), then the conformal modulus of \(\mathbb {A}^*\) must not be greater or equal to \(\pi /2\). This curious phenomenon is opposite to the Nitsche type phenomenon known for the standard Dirichlet energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Antman, S.S.: Nonlinear Problems of Elasticity. Applied Mathematical Sciences, vol. 107. Springer, New York (1995)

    Book  Google Scholar 

  2. Astala, K., Iwaniec, T., Martin, G.: Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane. Princeton University Press (2009)

  3. Astala, K., Iwaniec, T., Martin, G.: Deformations of annuli with smallest mean distortion. Arch. Ration. Mech. Anal. 195(3), 899–921 (2010)

    Article  MathSciNet  Google Scholar 

  4. Ball, J.M.: Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Philos. Trans. R. Soc. Lond. A 306, 557–611 (1982)

    Article  MathSciNet  Google Scholar 

  5. Ball, J.M.: Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63(4), 337–403 (1976, 77)

  6. Bourgoin, J.-C.: The minimality of the map \(x/|x|\) for weighted energy. Calc. Var. Partial. Differ. Equ. 25(4), 469–489 (2006)

    Article  MathSciNet  Google Scholar 

  7. Brezis, H., Coron, J.-M., Lieb, E.H.: Harmonic Maps with Defects. Commun. Math. Phys. 107, 649–705 (1986)

    Article  MathSciNet  Google Scholar 

  8. Ciarlet, P.G.: Mathematical elasticity Vol. I. Three-dimensional elasticity. Studies in Mathematics and its Applications 20, North-Holland Publishing Co., Amsterdam (1988)

  9. Chen, J., Kalaj, D.: Dirichlet-type energy of mappings between two concentric annuli. Calc. Var. Partial Differ. Equ. 60(6), 205 (2021)

    Article  MathSciNet  Google Scholar 

  10. Hencl, S., Pratelli, A.: Diffeomorphic approximation of \(\cal{W} ^{1,1}\) planar Sobolev homeomorphisms. J. Eur. Math. Soc. 20(3), 597–656 (2018)

    Article  MathSciNet  Google Scholar 

  11. Iwaniec, T., Kovalev, L.V., Onninen, J.: Diffeomorphic approximation of Sobolev homeomorphisms. Arch. Rat. Mech. Anal. 201(3), 1047–1067 (2011)

    Article  MathSciNet  Google Scholar 

  12. Iwaniec, T., Onninen, J.: \(n\)-harmonic mappings between annuli: the art of integrating free Lagrangians. Mem. Am. Math. Soc. 218, 105 (2012)

    MathSciNet  Google Scholar 

  13. Kalaj, D.: \((n,\rho )\)-harmonic mappings and energy minimal deformations between annuli. Calc. Var. 58, 19 (2019)

    Article  MathSciNet  Google Scholar 

  14. Kalaj, D.: Harmonic maps between two concentric annuli in \(\mathbb{R} ^3\). Adv. Calc. Var. 14(3), 303–312 (2021)

    Article  MathSciNet  Google Scholar 

  15. Kalaj, D.: Hyperelastic deformations and total combined energy of mappings between annuli. J. Differ. Equ. 268, 6103–6136 (2020)

    Article  MathSciNet  Google Scholar 

  16. Kalaj, D.: Deformations of annuli on Riemann surfaces and the generalization of Nitsche conjecture. J. Lond. Math. Soc. 93(3), 683–702 (2016)

    Article  MathSciNet  Google Scholar 

  17. Koski, A., Onninen, J.: Radial symmetry of \(p\)- harmonic minimizers. Arch. Ration. Mech. Anal. 230, 321–342 (2018)

    Article  MathSciNet  Google Scholar 

  18. Min-Chun, H.: On the minimality of the p-harmonic map \(x/|x|:\mathbb{B} ^n\rightarrow \mathbb{S} ^{n-1}\). Calc. Var. Partial. Differ. Equ. 13(4), 459–468 (2001)

    Article  MathSciNet  Google Scholar 

  19. Rickman, S.: Quasiregular Mappings. Springer, Berlin (1993)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kalaj.

Ethics declarations

Conflict of interest

The author declares that he has not Conflict of interest.

Additional information

Communicated by Adrian Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalaj, D. Radial symmetry of minimizers to the weighted p-Dirichlet energy. Monatsh Math (2024). https://doi.org/10.1007/s00605-024-01986-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00605-024-01986-8

Keywords

Mathematics Subject Classification

Navigation