Skip to main content
Log in

Spectrum of self-affine measures on the Sierpinski family

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this study, a spectrum \(\Lambda \) for the integral Sierpinski measures \(\mu _{M, D}\) with the digit set \( D= \left\{ \begin{pmatrix} 0\\ 0 \end{pmatrix}, \begin{pmatrix} 1\\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}\right\} \) is derived for a \(2 \times 2\) diagonal matrix M with entries as \(3\ell _1\) and \(3\ell _4\) and for off-diagonal matrix M with both the off-diagonal entries as \(3\ell \) where, \(\ell ,\ell _1,\ell _4 \in {\mathbb {Z}}{\setminus }{\{0\}}\). Additionally, the spectrum of \(\mu _{M, D}\) for a given M and a generalized digit set D is also examined. The spectrum of self-affine measures \(\mu _{M, D}\) on spatial Sierpinski gasket is obtained when M is diagonal matrix with entries \(\ell _i \in 2{\mathbb {Z}}\setminus {\{0\}}\), sign of \(\ell _i\)’s are same and \(D=\{0, e_1, e_2, e_3\}\), where \(e_i's \) are the standard basis in \({\mathbb {R}}^3\). Further, the spectrum of \(\mu _{M, D}\) for some off-diagonal \(3\times 3\) matrices is also found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30(5), 713–747 (1981)

    Article  MathSciNet  Google Scholar 

  2. Fuglede, B.: Commuting self-adjoint partial differential operators and a group theoretic problem. J. Funct. Anal. 16(1), 101–121 (1974)

    Article  MathSciNet  Google Scholar 

  3. Matolcsi, M.: Fuglede’s conjecture fails in dimension 4. Proc. Am. Math. Soc. 133(10), 3021–3026 (2005)

    Article  MathSciNet  Google Scholar 

  4. Kolountzakis, M.N., Matolcsi, M.: Tiles with no spectra. Forum Math. 18 (3) (2006)

  5. Farkas, B., Révész, S.G.: Tiles with no spectra in dimension 4. Math. Scand. 98, 44–52 (2006)

    Article  MathSciNet  Google Scholar 

  6. Farkas, B., Matolcsi, M., Móra, P.: On Fuglede’s conjecture and the existence of universal spectra. J. Fourier Anal. Appl. 12(5), 483–494 (2006)

    Article  MathSciNet  Google Scholar 

  7. Jorgensen, P.E., Pedersen, S.: Dense analytic subspaces in fractal \({L}^2\)-spaces. Journal d’Analyse Mathématique 75(1), 185–228 (1998)

    Article  MathSciNet  Google Scholar 

  8. Łaba, I., Wang, Y.: On spectral cantor measures. J. Funct. Anal. 193(2), 409–420 (2002)

    Article  MathSciNet  Google Scholar 

  9. Hu, T.-Y., Lau, K.-S.: Spectral property of the Bernoulli convolutions. Adv. Math. 219(2), 554–567 (2008)

    Article  MathSciNet  Google Scholar 

  10. Dai, X.-R.: When does a Bernoulli convolution admit a spectrum? Adv. Math. 231(3–4), 1681–1693 (2012)

    Article  MathSciNet  Google Scholar 

  11. Li, J.-L.: Non-spectral problem for a class of planar self-affine measures. J. Funct. Anal. 255(11), 3125–3148 (2008)

    Article  MathSciNet  Google Scholar 

  12. Dai, X.-R., He, X.-G., Lai, C.-K.: Spectral property of cantor measures with consecutive digits. Adv. Math. 242, 187–208 (2013)

    Article  MathSciNet  Google Scholar 

  13. Strichartz, R.S.: Mock Fourier series and transforms associated with certain cantor measures. Journal d’Analyse Mathématique 81(1), 209–238 (2000)

    Article  MathSciNet  Google Scholar 

  14. Dutkay, D.E., Jorgensen, P.E.: Analysis of orthogonality and of orbits in affine iterated function systems. Math. Z. 256(4), 801–823 (2007)

    Article  MathSciNet  Google Scholar 

  15. Li, J.-L.: On the \(\mu _{M, D}\)-orthogonal exponentials. Nonlinear Anal. Theory, Methods Appl. 73(4), 940–951 (2010)

    Article  Google Scholar 

  16. Dutkay, D.E., Jorgensen, P.E.: Fourier frequencies in affine iterated function systems. J. Funct. Anal. 247(1), 110–137 (2007)

    Article  MathSciNet  Google Scholar 

  17. Dutkay, D., Haussermann, J., Lai, C.-K.: Hadamard triples generate self-affine spectral measures. Trans. Am. Math. Soc. 371(2), 1439–1481 (2019)

    Article  MathSciNet  Google Scholar 

  18. Li, J.-L.: Non-spectrality of planar self-affine measures with three-elements digit set. J. Funct. Anal. 257(2), 537–552 (2009)

    Article  MathSciNet  Google Scholar 

  19. Li, J.: Spectral self-affine measures on the planar Sierpinski family. Sci. China Math. 56(8), 1619–1628 (2013)

    Article  MathSciNet  Google Scholar 

  20. An, L.-X., He, X.-G., Tao, L.: Spectrality of the planar Sierpinski family. J. Math. Anal. Appl. 432(2), 725–732 (2015)

    Article  MathSciNet  Google Scholar 

  21. Li, J.-L.: The cardinality of certain \(\mu \)m, d-orthogonal exponentials. J. Math. Anal. Appl. 362(2), 514–522 (2010)

    Article  MathSciNet  Google Scholar 

  22. Li, J.-L.: Spectrality of self-affine measures on the three-dimensional Sierpinski gasket. Proc. Edinb. Math. Soc. 55(2), 477–496 (2012)

    Article  MathSciNet  Google Scholar 

  23. Li, J.-L.: Spectral self-affine measures on the spatial Sierpinski gasket. Monatshefte für Mathematik 176(2), 293–322 (2015)

    Article  MathSciNet  Google Scholar 

  24. Li, J.-L.: Non-spectrality of self-affine measures on the spatial Sierpinski gasket. J. Math. Anal. Appl. 432(2), 1005–1017 (2015)

    Article  MathSciNet  Google Scholar 

  25. Wang, Q., Li, J.-L.: Spectrality of certain self-affine measures on the generalized spatial Sierpinski gasket. Math. Nachr. 289(7), 895–909 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the referee for their constructive evaluation of the paper and their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Megala.

Ethics declarations

Conflict of interest

The authors have no competing interest and funding resources to declare.

Additional information

Communicated by .

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Megala, M., Prasad, S.A. Spectrum of self-affine measures on the Sierpinski family. Monatsh Math 204, 157–169 (2024). https://doi.org/10.1007/s00605-023-01939-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-023-01939-7

Keywords

Mathematics Subject Classification

Navigation