Skip to main content
Log in

An extension of Aigner’s theorem

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In 1957, Aigner (Monatsh Math 61:147–150, 1957) showed that the equations \(x^6+y^6=z^6\) and \(x^9+y^9=z^9\) have no solutions in any quadratic number field with \(xyz\ne 0\). We show that Aigner’s result holds for all equations \(x^{3n}+y^{3n}=z^{3n}\), where \(n\ge 2\) is a positive integer. The proof combines Aigner’s idea with deep results on Fermat’s equation and its variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aigner, A.: Über die Möglichkeit von \(x^4 + y^4 = z^4\) in quadratische Körper. J. Math. Verein. 43, 226–228 (1934)

    Google Scholar 

  2. Aigner, A.: Die Unmöglichkeit von \(x^6 + y^6 = z^6\) und \(x^9 + y^9 = z^9\) in quadratischen Körpern. Monatsh. Math. 61, 147–150 (1957)

    Article  MathSciNet  Google Scholar 

  3. Bennett, M.A., Skinner, C.: Ternary Diophantine equations via Galois representations and modular forms. Can. J. Math. 56, 23–54 (2004)

    Article  MathSciNet  Google Scholar 

  4. Bennett, M.A., Vatsal, V., Yazdani, S.: Ternary Diophantine equations of signature \((p, p,3)\). Compos. Math. 140, 1399–1416 (2004)

    Article  MathSciNet  Google Scholar 

  5. Bennett, M.A., Chen, I., Dahmen, S., Yazdani, S.: Generalized Fermat equations: a miscellany. Int. J. Number Theory 11(1), 1–28 (2015)

    Article  MathSciNet  Google Scholar 

  6. Bremner, A., Choudhry, A.: The Fermat cubic and quartic curves over cyclic fields. Period. Math. Hungar. 80, 147–157 (2019)

    Article  MathSciNet  Google Scholar 

  7. Burnside, W.: On the rational solutions of the equation \(x^3+y^3+z^3=0\) in quadratic number fields. Proc. Lond. Math. Soc. 14, 1–4 (1915)

    Article  Google Scholar 

  8. Darmon, H., Merel, L.: Winding quotients and some variants of Fermat’s Last Theorem. J. Für die Reine und Angew. Math. 490, 81–100 (1997)

    MathSciNet  Google Scholar 

  9. Deconinck, H.: On the generalized Fermat equation over totally real fields. Acta Arith. 173(3), 225–237 (2016)

    MathSciNet  Google Scholar 

  10. Faddeev, D. K.: Group of divisor classes on the curve defined by the equation \(x^4 + y^4 = 1\). Soviet Math. Dokl. 1, 1149–1151 (1960); Dokl. Akad. Nauk SSSR 134, 776–777 (1960). (Russian original). http://www.mathnet.ru/php/archive.phtml?wshow=paper &jrnid=dan &paperid=24092 &option_lang=eng

  11. Freitas, N., Siksek, S.: Fermat’s Last Theorem over some small real quadratic fields. Algebra Number Theory 9, 875–895 (2015)

    Article  MathSciNet  Google Scholar 

  12. Freitas, N., Siksek, S.: An asymptotic Fermat’s Last Theorem over five-sixths of real quadratic fields. Compos. Math. 151, 1395–1415 (2015)

    Article  MathSciNet  Google Scholar 

  13. Freitas, N., Kraus, A., Siksek, S.: Class field theory, Diophantine analysis and the asymptotic Fermat’s last theorem. Adv. Math. 363, 106964 (2020)

    Article  MathSciNet  Google Scholar 

  14. Gross, B.H., Rohrlich, D.E.: Some results on the Mordell–Weil group of the Jacobian of the Fermat curve. Invent. Math. 44(3), 201–224 (1978)

    Article  MathSciNet  Google Scholar 

  15. Hao, F.H., Parry, C.J.: The Fermat equation over quadratic fields. J. Number Theory 19, 115–130 (1984)

    Article  MathSciNet  Google Scholar 

  16. Ishitsuka, Y., Ito, T., Oshita, T.: Explicit calculation of the mod 4 Galois representation associated with the Fermat quartic. Int. J. Number Theory 16(4), 881–905 (2020)

    Article  MathSciNet  Google Scholar 

  17. Isik, E., Kara, Y., Ozman, E.: On ternary Diophantine equations of signature \((p, p,3)\) over number fields. Can. J. Math. (2022). https://doi.org/10.4153/S0008414X22000311

    Article  Google Scholar 

  18. Jarvis, F., Meekin, P.: The Fermat equation over \({\mathbb{Q} }(\sqrt{2})\). J. Number Theory 109(1), 182–196 (2004)

    Article  MathSciNet  Google Scholar 

  19. Kolyvagin, V.A.: The Fermat equations over cyclotomic fields. Tr. V. A. Steklov Mat. Inst. 208, 163–185 (1995)

    MathSciNet  Google Scholar 

  20. Klassen, M., Tzermias, P.: Algebraic points of low degree on the Fermat quintic. Acta Arith. 82(4), 393–401 (1997)

    Article  MathSciNet  Google Scholar 

  21. Kraus, A.: Sur le théorème de Fermat sur\({\mathbb{Q} }(\sqrt{5})\). Ann. Math. Qué. 39(1), 49–59 (2015)

    Article  MathSciNet  Google Scholar 

  22. Kraus, A.: Quartic points on the Fermat quintic. Ann. Math. Blaise Pascal 25(1), 99–205 (2018)

    Article  MathSciNet  Google Scholar 

  23. Lynch, R., Morton, P.: The quartic Fermat equation in Hilbert class fields of imaginary quadratic fields. Int. J. Number Theory 11(6), 1961–2017 (2015)

    Article  MathSciNet  Google Scholar 

  24. Mordell, L. J.: The Diophantine equation \(x^4+y^4 = 1\) in algebraic number fields. Acta Arith. 14, 347–355 (1967/1968)

  25. Morton, P.: Solutions of the cubic Fermat equation in ring class fields of imaginary quadratic fields (as periodic points of a 3-adic algebraic function. Int. J. Number Theory 12(4), 853–902 (2016)

    Article  MathSciNet  Google Scholar 

  26. Poonen, B.: Some Diophantine equations of the form \(x^n + y^n = z^m\). Acta Arith. 86(3), 193–205 (1998)

    Article  MathSciNet  Google Scholar 

  27. Taylor, R., Wiles, A.: Ring-theoretic properties of certain Hecke algebras. Ann. Math. 2(141), 553–572 (1995)

    Article  MathSciNet  Google Scholar 

  28. Şengün, M.H., Siksek, S.: On the asymptotic Fermat’s last theorem over number fields. Comment. Math. Helv. 93(2), 359–375 (2018)

    Article  MathSciNet  Google Scholar 

  29. Top, T., Sall, O.: Points algébriques de degrés au plus 12 sur la quintique de Fermat. Acta Arith. 169(4), 385–395 (2015)

    Article  MathSciNet  Google Scholar 

  30. Tzermias, P.: Algebraic points of low degree on the Fermat curve of degree seven. Manuscripta Math. 97(4), 483–488 (1998)

    Article  MathSciNet  Google Scholar 

  31. Ţurscaş, G.C.: On Serre’s modularity conjecture and Fermat’s equation over quadratic imaginary fields of class number one. J. Number Theory 209, 516–530 (2020)

    Article  MathSciNet  Google Scholar 

  32. Ţurscaş, G.C.: On Fermat’s equation over some quadratic imaginary number fields. Res. Number Theory 4(2), 1–16 (2018)

    MathSciNet  Google Scholar 

  33. Wiles, A.: Modular elliptic curves and Fermat’s last theorem. Ann. Math. 142, 443–551 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Xuan Tho.

Additional information

Communicated by Alberto Minguez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tho, N.X. An extension of Aigner’s theorem. Monatsh Math 204, 191–195 (2024). https://doi.org/10.1007/s00605-023-01913-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-023-01913-3

Keywords

Mathematics Subject Classification

Navigation