Skip to main content
Log in

A cylindrical coordinates approach concerning azimuthal geophysical flows

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we devise a new exact and partially explicit solution to the governing equations of geophysical fluid dynamics for an inviscid and incompressible azimuthal flow with a discontinuous density distribution that varies with both depth and latitude and subjected to forcing terms in terms of cylindrical coordinates. An analysis allows us to draw qualitative and quantitative results about the interface and the free surface of the azimuthal flow. Moreover, a particular example is considered to show that the interface can be determined explicitly. Finally, we obtain the expected monotonicity properties between the surface pressure and its distortion and derive an infinite regularity about the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Basu, B.: On an exact solution of a nonlinear three-dimensional model in ocean flows with equatorial undercurrent and linear variation in density. Discrete Contin. Dyn. Syst. A. 39, 4783–4796 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chu, J., Escher, J.: Steady equatorial water waves with vorticity. Discrete Contin. Dyn. Syst. A. 39, 4713–4729 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chu, J., Ionescu-Kruse, D., Yang, Y.: Exact solution and instability for geophysical waves at arbitrary latitude. Discrete Contin. Dyn. Syst. A. 39, 4399–4414 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  4. Constantin, A.: Nonliear Water Waves with Applications to Wave-Current Interactions and Tsunamis. CBMS-NSF Conference Series in Applied Mathematics, vol. 81. SIAM, Philadelphia (2011)

    Book  Google Scholar 

  5. Constantin, A.: On the modelling of equatorial waves. Geophys. Res. Lett. 39, L05602 (2012)

    Article  Google Scholar 

  6. Constantin, A.: An exact solution for equatorially trapped waves. J. Geophys. Res. Oceans 117, C05029 (2012)

    Article  Google Scholar 

  7. Constantin, A.: Some three-dimensional nonlinear equatorial flows. J. Phys. Oceanogr. 43, 165–175 (2013)

    Article  Google Scholar 

  8. Constantin, A.: Some nonlinear, equatorially trapped, nonhydrostatic internal geophysical waves. J. Phys. Oceanogr. 44, 781–789 (2014)

    Article  Google Scholar 

  9. Constantin, A., Ivanov, R.I.: A hamiltonian approach to wave-current interactions in two-layer fluids. Phys. Fluids 27, 086603 (2015)

    Article  MATH  Google Scholar 

  10. Constantin, A., Ivanov, R.I.: Equatorial wave-current interactions. Commun. Math. Phys. 370, 1–48 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Constantin, A., Johnson, R.S.: The dynamics of waves interacting with the Equatorial Undercurrent. Geophys. Astrophys. Fluid Dyn. 109, 311–358 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal equatorial flow with a free surface. J. Phys. Oceanogr. 46, 1935–1945 (2016)

    Article  Google Scholar 

  13. Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal flow as a model for the Antarctic Circumpolar Current. J. Phys. Oceanogr. 46, 3585–3594 (2016)

    Article  Google Scholar 

  14. Constantin, A., Johnson, R.S.: A nonlinear, three-dimensional model for ocean flows, motivated by some observations of the pacific equatorial undercurrent and thermocline. Phys. Fluids 29, 056604 (2017)

    Article  Google Scholar 

  15. Fan, L., Shen, S., Chen, Y.: A cylindrical coordinates approach concerning the Antarctic Circumpolar Current. Monatsh. Math. 196, 269–279 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Firing, Y.L., Chereskin, T.K., Mazloff, M.R.: Vertical structure and transport of the Antarctic Circumpolar Current in Drake Passage from direct velocity observations. J. Geophys. Res. 116, C08015 (2011)

    Google Scholar 

  17. Haziot, S.V.: Study of an elliptic partial differential equation modelling the Antarctic Circumpolar Current. Discrete Contin. Dyn. Syst. A. 39, 4415–4427 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Henry, D.: An exact solution for equatorial geophysical water waves with an underlying current. Eur. J. Mech. B/Fluids 38, 18–21 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Henry, D., Martin, C.I.: Exact, purely azimuthal stratified equatorial flows in cylindrical coordinates. Dyn. PDE 15, 337–349 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Henry, D., Martin, C.I.: Exact, free-Surface equatorial flows with general stratification in spherical coordinates. Arch. Rational Mech. Anal. 233, 497–512 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Henry, D., Martin, C.I.: Free-surface, purely azimuthal equatorial flows in spherical coordinates with stratification. J. Differ. Equ. 266, 6788–6808 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Henry, D., Martin, C.I.: Stratified equatorial flows in cylindrical coordinates. Nonlinearity 33, 3889–3904 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hsu, H.-C., Martin, C.I.: Free-surface capillary-gravity azimuthal equatorial flows. Nonlinear Anal. Theory Methods Appl. 144, 1–9 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hsu, H.-C., Martin, C.I.: On the existence of solutions and the pressure function related to the Antarctic Circumpolar Current. Nonlinear Anal. Theory Methods Appl. 155, 285–293 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ionescu-Kruse, D.: A three-dimensional autonomous nonlinear dynamical system modelling equatorial ocean flows. J. Differ. Equ. 264, 4650–4668 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ivchenko, V.O., Richards, K.J.: The dynamics of the Antarctic Circumpolar Current. J Phys. Oceanogr. 26, 53–774 (1996)

    Article  Google Scholar 

  27. Martin, C.I.: Azimuthal equatorial flows in spherical coordinates with discontinuous stratification. Phys. Fluids 33, 026602 (2021)

    Article  Google Scholar 

  28. Martin, C.I., Quirchmayr, R.: Explicit and exact solutions concerning the Antarctic Circumpolar Current with variable density in spherical coordinates. J. Math. Phys. 60, 101505 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  29. Martin, C.I., Quirchmayr, R.: A steady stratified purely azimuthal flow representing the Antarctic Circumpolar Current. Monatsh. Math. 1, 1–7 (2019)

    MATH  Google Scholar 

  30. Martin, C.I., Quirchmayr, R.: Exact solutions and internal waves for the Antarctic Circumpolar Current in spherical coordinates. Stud. Appl. Math. (2021). https://doi.org/10.1111/sapm.12467

    Article  MATH  Google Scholar 

  31. Martin, C.I., Petruşel, A.: Free surface equatorial flows in spherical coordinates with discontinuous stratification depending on depth and latitude. Annali di Matematica (2022). https://doi.org/10.1007/s10231-022-01214-w

    Article  MATH  Google Scholar 

  32. Marynets, K.: The Antarctic Circumpolar Current as a shallow-water asymptotic solution of Euler’s equation in spherical coordinates. Deep Sea Res. Part II(160), 58–62 (2019)

    Article  Google Scholar 

  33. Matioc, A.V.: An exact solution for geophysical equatorial edge waves over a sloping beach. J. Phys. A 45, 365501 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Olbers, D., Borowski, D., Völker, C., Wölff, J.O.: The dynamical balance, transport and circulation of the Antarctic Circumpolar Current. Antarctic Sci. 16, 439–470 (2004)

    Article  Google Scholar 

  35. Phillips, H., Legresy, B., Bindoff, N.: Explainer: how the Antarctic Circumpolar Current helps keep Antarctica frozen. The Conversation, November 15 (2018)

  36. Quirchmayr, R.: A steady, purely azimuthal flow model for the Antarctic Circumpolar Current. Monatsh. Math. 187, 565–572 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rintoul, S.R., Hughes, C., Olbers, D.: The Antarctic Circumpolar Current system. In: Seidler, G., Church, J., Gould, J. (eds.) Ocean Circulation and Climate: Observing and Modelling the Global Ocean, pp. 271–302. Academic Press, New York (2001)

    Chapter  Google Scholar 

  38. Waterman, S., Garabato, A.C.N.: Internal waves and turbulence in the Antarctic Circumpolar Current. J. Phys. Oceanogr. 43, 259–282 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The work of Fan is partially supported by a NSF of Henan Province of China Grant No. 222300420478 and the NSF of Henan Normal University Grant No. 2021PL04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lili Fan.

Additional information

Communicated by Adrian Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, L., Shen, S. A cylindrical coordinates approach concerning azimuthal geophysical flows. Monatsh Math 202, 791–806 (2023). https://doi.org/10.1007/s00605-023-01876-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-023-01876-5

Keywords

Mathematics Subject Classification

Navigation