Skip to main content
Log in

On the algebraic differential independence of \( \Gamma \) and \( \zeta \)

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

The paper concerns the problem of algebraic differential independence between Riemann zeta function and functions in a certain class \({\mathcal {F}}\), which contains the gamma function and some exponential functions. It is proved that Riemann zeta function and the functions in \({\mathcal {F}}\) cannot satisfy a class of nontrivial algebraic differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bank, S., Kaufman, R.: An extension of Hölder’s theorem concerning the gamma function. Funkc. Ekvacioj 19, 53–63 (1976)

    MATH  Google Scholar 

  2. Cartan, H.: Sur les systémes de fonctions holomorphes á variétés linéaires lacunaires et leurs applications. Ann. Sci. École Norm. Super. 3(45), 255–346 (1928)

    Article  MATH  Google Scholar 

  3. Chen, W., Wang, Q.: On the differential and difference independence of \(\Gamma \) and \(\zeta \). Acta Math. Sci. 41B, 505–516 (2021)

    Article  MathSciNet  Google Scholar 

  4. Chen, W., Wang, Q.: Algebraic differential independence concerning the Euler \(\Gamma \)-function and Dirichlet series. Acta Math. Sci. 40B, 1035–1044 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chiang, Y., Feng, S.: Difference independence of the Riemann zeta function. Acta Arith. 125, 317–329 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Han, Q., Liu, J.: Algebraic differential independence regarding the Euler \(\Gamma \)-function and the Riemann \(\zeta \)-function. J. Number Theory 221, 109–121 (2021)

    Article  MathSciNet  Google Scholar 

  7. Hausdorff, F.: Zum Hölderschen Satzüber \(\zeta (z)\). Math. Ann. 94, 244–247 (1925)

    Article  MathSciNet  Google Scholar 

  8. Hayman, W.: Meromorphic Function. Clarendon Press, Oxford (1964)

    MATH  Google Scholar 

  9. Hilbert, D.: Mathematische Probleme, Arch. Math. Phys. 1, 44–63, 213–317 (1901)

  10. Hölder, O.: Uber die Eigenschaft der \(\Gamma \)-function, keiner algebraischen Differentialgleichung zu genügen. Math. Ann. 28, 1–13 (1887)

    Article  Google Scholar 

  11. Huang, J., Ng, T.: Hypertranscendency of perturbations of hypertranscendental functions. J. Math. Anal. Appl. 491, 124390 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Levin, B.: Distribution of zeros of entire functions, rev. ed., transl. from the Russian by Boas R.P. et al. Am. Math. Soc. Providence, (1980)

  13. Li, B., Ye, Z.: Algebraic differential equations concerning the Riemann zeta function and the Euler gamma function. Indiana Univ. Math. J. 59, 1405–1415 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, B., Ye, Z.: On algebraic differential properties of the Riemann \(\zeta \)-function and Euler \(\Gamma \)-function. Complex Var. Elliptic Equ. 56, 137–145 (2011)

    Article  MathSciNet  Google Scholar 

  15. Li, B., Ye, Z.: Algebraic differential equations with functional coefficients concerning \(\zeta \) and \(\Gamma \). J. Differ. Equ. 260, 1456–1464 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liao, L., Yang, C.: On some new properties of the gamma function and the Riemann zeta-function. Math. Nachr. 257, 59–66 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lü, F.: On algebraic differential equations for the gamma function and \(L\)-functions in the extended Selberg class. Bull. Aust. Math. Soc. 96, 36–43 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lü, F.: A study on algebraic differential equationd of gamma function and Dirichlet series. J. Math. Anal. Appl. 462, 1195–1204 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lü, F.: On algebraic differential equations of gamma function and Riemann zeta function. Ann. Acad. Sci. Fenn. Math. 44, 1031–1040 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Markus, L.: Differential independence of \(\Gamma \) and \(\zeta \). J. Dyn. Differ. Equ. 19, 133–154 (2007)

    Article  MathSciNet  Google Scholar 

  21. Matsumoto, K.: A survey on the theory of universality for zeta and \(L\)-functions. In: Number Theory, 95–144, Ser. Number Theory Appl. 11. World Science Publications, Hackensack, NJ (2015)

  22. Mordykhai-Boltovskoi, D.: On hypertranscendence of the function \(\xi (x, s)\). Izv. Politekh. Inst. Warsaw 2, 1–16 (1914)

    Google Scholar 

  23. Moore, E.: Concerning transcendentally transcendental functions. Math. Ann. 48, 49–74 (1897)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ostrowski, A.: Neuer Beweis des Hölderschen Satzes, da\(\beta \) die Gammafunktion keiner algebraischen Differffentialgleichung genügt. Math. Ann. 79, 286–288 (1918)

    Article  MathSciNet  Google Scholar 

  25. Ostrowski, A.: Über Dirichletsche Reihen und algebraische Differentialgleichungen. Math. Z. 8, 241–298 (1920)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ostrowski, A.: Zum Hölderschen Satzüber \(\Gamma (z)\). Math. Ann. 94, 248–251 (1925)

    Article  MathSciNet  Google Scholar 

  27. Steuding, J.: Value Distribution of \(L\)-Functions. Lecture Notes in Math, vol. 1877. Springer, Berlin (2007)

  28. Titchmarsh, E.: The Theory of Functions (2ND edN). Oxford University Press (1968), reprinted

  29. Voronin, S.: The distribution of the nonzero values of the Riemann \(\zeta \)-function. Trudy Mat. Inst. Steklov. 128, 131–150 (1972)

    MathSciNet  Google Scholar 

  30. Voronin, S.: A theorem on the distribution of values of the Riemann \(\zeta \)-function. Dokl. Akad. Nauk SSSR. 221, 771 (1975)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Lü.

Additional information

Communicated by Alberto Minguez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported by Natural Science Foundation of Shandong Province (ZR2022MA014)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, F., Jiang, S. On the algebraic differential independence of \( \Gamma \) and \( \zeta \). Monatsh Math 202, 141–159 (2023). https://doi.org/10.1007/s00605-023-01858-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-023-01858-7

Keywords

Mathematics Subject Classification

Navigation