Skip to main content

Advertisement

Log in

The Orlicz–Lorentz centroid inequality for star bodies*

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

The Orlicz–Lorentz Busemann–Petty centroid inequality for convex bodies was recently established by Nguyen (Advances in Applied Mathematics 92:99–121, 2006). In this paper, by the Steiner symmetrization of star bodies, an extension to star bodies will be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Böröczky, K., Lutwak, E., Yang, D., Zhang, G.: The log-Brunn–Minkowski inequality. Adv. Math. 231, 1974–1997 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Campi, S., Gronchi, P.: The \(L_p\)-Busemann–Petty centroid inequality. Adv. Math. 167, 128–141 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Campi, S., Gronchi, P.: On the reverse \(L^p\)-Busemann–Petty centroid inequality. Mathematika 49, 1–11 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, F., Zhou, J., Yang, C.: On the reverse Orlicz Busemann–Petty centroid inequality. Adv. Appl. Math. 47, 820–828 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fang, N., Zhou, J.: LYZ ellipsoid and Petty projection body for log-concave functions. Adv. Math. 340, 914–959 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gardner, R.: The Brunn–Minkowski inequality. Bull. Am. Math. Soc. (New Seri.) 39(3), 355–405 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gardner, R., Hug, D., Weil, W., Ye, D.: The dual Orlicz–Brunn–Minkowski theory. J. Math. Anal. Appl. 430, 810–829 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Haberl, C., Schuster, F.: General \(L_p\) affine isoperimetric inequalities. J. Differ. Geom. 83, 1–26 (2009)

    Article  MATH  Google Scholar 

  9. Haberl, C., Schuster, F.: Asymmetric affine \(L_p\) Sobolev inequalities. J. Funct. Anal. 257, 641–658 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Haddad, J., Jimenez, C.H., Montenegro, M.: Sharp affine Sobolev type inequalities via the \(L_p\) Busemann–Petty centroid inequality. J. Funct. Anal. 271, 454–473 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hadwiger, H.: Vorlesungen über Inhalt. Oberflähe und Isoperimetrie, Springer, Berlin, Götingen, Heidelberg (1957)

    MATH  Google Scholar 

  12. Li, A., Leng, G.: A new proof of the Orlicz Busemann–Petty centroid inequality. Proc. Am. Math. Soc. 139, 1473–1481 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lutwak, E.: The Brunn Minkowski–Firey theory II: Affine and geominimal surface areas. Adv. Math. 118, 244–294 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lutwak, E., Yang, D., Zhang, G.: \(L_p\) affine isoperimetric inequalities. J. Differ. Geom. 56, 111–132 (2000)

    Article  MATH  Google Scholar 

  15. Lutwak, E., Yang, D., Zhang, G.: Orlicz projection bodies. Adv. Math. 223, 220–242 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lutwak, E., Yang, D., Zhang, G.: Orlicz centroid bodies. J. Differ. Geom. 84, 365–387 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nguyen, V.H.: Orlicz–Lorentz centroid bodies. Adv. Appl. Math. 92, 99–121 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Paouris, G.: Concentration of mass on convex bodies. Geom. Funct. Anal. 16, 1021–1049 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Paouris, G.: Concentration of mass on isotropic convex bodies. C. R. Math. Acad. Sci. Paris 342, 179–182 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Paouris, G., Pivovarov, P.: Randomized isoperimetric inequalities. Convexity and Concentration, pp. 391–425, IMA Vol. Math. Appl., 161, Springer, New York (2017)

  21. Paouris, G., Pivovarov, P.: A probabilistic take on isoperimetric inequalities. Adv. Math. 230, 1402–1422 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Petty, C.M.: Centroid surfaces. Pac. J. Math. 11, 1535–1547 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  23. Petty, C.M.: Ellipsoids. In: Gruber, M., Wills, J.M. (eds.) Convexity and its Applications, pp. 264–276. Basel, Birkhäser (1983)

  24. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge (2014)

  25. Wang, T.: The affine Sobolev–Zhang inequality on \(BV({\mathbb{R} }^n)\). Adv. Math. 230, 2457–2473 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Werner, E.: On \(L_p\) affine surface area. Indiana Univ. Math. J. 56, 2305–2323 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Werner, E., Ye, D.: New \(L_p\) affine isoperimetric inequalities. Adv. Math. 218, 762–780 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wu, D., Zhou, J.: The LYZ centroid conjecture for star bodies. Sci. China Math. 61, 1273–1286 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xi, D., Leng, G.: Dar’s conjecture and the log-Brunn–Minkowski inequality. J. Differ. Geom. 103, 145–189 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xi, D., Jin, H., Leng, G.: The Orlicz Brunn–Minkowski inequality. Adv. Math. 260, 350–374 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ye, D.: Dual Orlicz Brunn Minkowski theory: dual Orlicz \(L_{\phi }\) affine and geominimal surface areas. J. Math. Anal. Appl. 443, 352–371 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, G.: The affine Sobolev inequality. J. Differ. Geom. 53, 183–202 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang, Z., Fang, N.: A new proof of Orlicz–Lorentz Busemann–Petty centroid inequality. J. Math. Inequal. 13, 703–712 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhu, B., Xu, W.: Reverse Bonnesen-style inequalities on surfaces of constant curvature. Int. J. Math. 29, 1850040 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhu, B., Zhou, J., Xu, W.: Dual Orlicz–Brunn–Minkowski theory. Adv. Math. 264, 700–725 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhu, G.: The Orlicz centroid inequality for star bodies. Adv. Appl. Math. 48, 432–445 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhu, G.: The centro-affine Minkowski problem for polytopes. J. Differ. Geom. 101, 159–174 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zou, D., Xiong, G.: Orlicz–John ellipsoids. Adv. Math. 265, 132–168 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengle Zhang.

Additional information

Communicated by Adrian Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by the Natural Science Foundation of CQ CSTC (Grant No. cstc2020jcyj-msxmX0779), the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN202201339) and Major Cultivation Project of Natural Science of Chongqing University of Arts and Sciences (Grant No. P2020SC09)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z. The Orlicz–Lorentz centroid inequality for star bodies*. Monatsh Math 200, 179–190 (2023). https://doi.org/10.1007/s00605-022-01791-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-022-01791-1

Keywords

Mathematics Subject Classification

Navigation