Skip to main content
Log in

Some properties of the solutions of the N-component Camassa–Holm system with peakons

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

Considered herein is the Cauchy problem for the N-component Camassa–Holm system with peakons. Owing to the local well-posedness results of the solutions to this problem, we first establish that the solution map is not uniformly continuous in Besov and Hölder spaces through the method of approximate solutions. Next, the Hölder continuity of this solution map in Besov and Sobolev spaces is discussed in detail. Finally, the local Gevrey regularity and analyticity of the solutions are verified by a generalized Ovsyannikov theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availibility

My manuscript has no associated data.

References

  1. Bahouri, H., Chemin, J., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der mathematischen Wissenschaften, vol. 343. Springer, Berlin (2011)

    MATH  Google Scholar 

  2. Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Camassa, R., Holm, D., Hyman, J.: A new integrable shallow water equation. Adv. Appl. Mech. 31, 1–33 (1994)

    Article  MATH  Google Scholar 

  4. Chen, W., Xu, T.: Local well-posedness in the critical Besov space and blow-up for an \(n\)-component Camassa–Holm system. J. Math. Appl. Anal. 504, 125423 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, M., Liu, Y., Zhang, P.: The Hölder continuity of the solution map to the \(b-\)family equation. Math. Ann. 357, 1245–1289 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50, 321–362 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181, 229–243 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Constantin, A., Escher, J.: On the blow-up rate and the blow-up set of breaking waves for a shallow water equation. Math. Z. 233, 75–91 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Constantin, A., Strauss, W.: Stability of peakons. Commun. Pure Appl. Math. 53, 603–610 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Danchin, R.: A few reamarks on the Camassa–Holm equation. Differ. Integral Equ. 14, 953–988 (2001)

    MATH  Google Scholar 

  11. Danchin, R.: A note on well-posedness for Camassa–Holm equation. J. Differ. Equ. 192, 429–444 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Danchin, R.: Fourier analysis method for PDEs, Lecture Notes, 14 November (2005)

  13. Fu, Y., Qu, C.: Well posedness and blow-up solution for a new coupled Camassa–Holm equations with peakons. J. Math. Phys. 50, 012906 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fu, Y., Qu, C., Liu, Y.: Well-posedness and blow-up solution for a modified two-component periodic Camassa–Holm system with peakons. Math. Ann. 348, 415–448 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fuchssteiner, B., Fokas, A.: Symplectic structures, their Bäklund transformation and hereditary symmetries. Physica D 4, 47–66 (1981/82)

  16. He, H., Yin, Z.: The global Gevrey regularity and analyticity of a two-component shallow water system with higher-order inertia operators. J. Differ. Equ. 267, 2531–2559 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Himonas, A., Holmes, J.: Hölder continuity of the solution map for the Novikov equation. J. Math. Phys. 54, 061501 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Himonas, A., Kenig, C.: Non-uniform dependence on initial data for the CH equation on the line. Differ. Integral Equ. 22, 201–224 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Himonas, A., Kenig, C., Misiołek, G.: Non-uniform dependence for the periodic CH equation. Commun. Partial Differ. Equ. 35, 1145–1162 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Holm, D., Náralgh, L., Tronci, C.: Singular solutions of a modified two-component Camassa–Holm equation. Phys. Rev. E 79, 016601 (2009)

    Article  MathSciNet  Google Scholar 

  21. Hu, Q., Lin, L., Jin, J.: Well-posedness and blow-up phenomenon for a new three-component Camassa–Holm system with peakons. J. Hyper. Differ. Equ. 9, 451–467 (2012)

    Article  MATH  Google Scholar 

  22. Lenells, J.: Stability of periodic peakons. Int. Math. Res. Not. 10, 485–499 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, Y., Olver, P.: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differ. Equ. 162, 27–63 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, J., Yin, Z.: Well-posedness and analytic solutions of the two-component Euler–Poincaré system. Monatsh Math. 183, 509–537 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, J., Yu, Y., Zhu, W.: Non-uniform dependence on initial data for Camassa–Holm equation in Besov spaces. J. Differ. Equ. 269, 8686–8700 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, J., Yu, Y., Zhu, W.: Ill-posedness for the Camassa–Holm and related equations in Besov spaces. J. Differ. Equ. 306, 403–417 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, X.: On the periodic Cauchy problem for a coupled Camassa–Holm system with peakons. Z. Angwe. Math. Phys. 67, 14 (2016). https://doi.org/10.1007/s00033-015-0608-9

    Article  MathSciNet  MATH  Google Scholar 

  28. Luo, W., Yin, Z.: Gevrey regularity and analyticity for Camassa–Holm type systems. Ann. Sc. Norm. Super. Pisa Cl. Sci. 18, 1061–1079 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Mi, Y., Guo, B., Mu, C.: On an \(N\)-Component Camassa–Holm equation with peakons. Discret. Contin. Dyn. Syst. 37, 1575–1601 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pastrana, J.: Non-uniform dependence for Euler equations in Besov spaces. J. Differ. Equ. 273, 40–57 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Qu, C., Fu, Y.: On a new three-component Camassa–Holm equation with peakons. Commun. Theor. Phys. 53, 223–230 (2010)

    Article  MATH  Google Scholar 

  32. Tang, H., Zhao, Y., Liu, Z.: A note on the solution map for the periodic Camassa–Holm equation. Appl. Anal. 93, 1745–1760 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Taylor, M.: Commutator estimates. Proc. Am. Math. Soc. 131, 1501–1507 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tian, L., Yan, W., Gui, G.: On the local well-posedness and blow-up solution to coupled Camassa–Holm equations in Besov spaces. J. Math. Phys. 53, 013701 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wang, H., Chong, G.: On the initial value problem for the two-coupled Camassa–Holm system in Besov spaces. Monatsh Math. 193, 479–505 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, F., Li, F.: Continuity properties of the data-to-solution map for the two-component higher order Camassa–Holm system. Nonlinear Anal. Real World Appl. 45, 866–876 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wu, X.: On the Cauchy problem for a three-component Camassa–Holm equations. Discret. Contin. Dyn. Syst. 36, 2827–2854 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhu, M.: Blow-up, global existence and persistence properties for the coupled Camassa–Holm equations. Math. Phys. Anal. Geom. 14, 197–209 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work is supported by Fundamental Research Program of Shanxi Province (Program No. 20210302124259).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiquan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Adrian Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H. Some properties of the solutions of the N-component Camassa–Holm system with peakons. Monatsh Math 201, 499–545 (2023). https://doi.org/10.1007/s00605-022-01781-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-022-01781-3

Keywords

Mathematics Subject Classification

Navigation