Skip to main content
Log in

Solutions with prescribed numbers of focal points of nonoscillatory linear Hamiltonian systems

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this paper we present an existence result for conjoined bases of nonoscillatory linear Hamiltonian systems on an unbounded interval, which have prescribed numbers of left and right proper focal points. The result is based on a singular Sturmian separation theorem on an unbounded interval by the authors (2019) and it extends a similar property, which was recently derived for linear Hamiltonian systems on compact interval (2021). At the same time it is new even for completely controllable linear Hamiltonian systems, including higher order Sturm–Liouville differential equations. As the main tools we use the comparative index and properties of the minimal principal solution at infinity, which serves as the reference solution for calculating the numbers of proper focal points. We also provide several examples illustrating the presented theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben-Israel, A., Greville, T.N.E.: Generalized Inverses: Theory and Applications, 2nd edn. Springer-Verlag, New York, NY (2003)

    MATH  Google Scholar 

  2. Bérard, P., Helffer, B.: Sturm’s theorem on the zeros of sums of eigenfunctions: Gelfand’s strategy implemented. Mosc. Math. J. 20(1), 1–25 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bérard, P., Helffer, B.: Sturm’s theorem on zeros of linear combinations of eigenfunctions. Expo. Math. 38(1), 27–50 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bernstein, D.S.: Scalar, Vector, and Matrix Mathematics. Theory, Facts, and Formulas. Princeton University Press, Princeton, NJ (2018)

    Book  MATH  Google Scholar 

  5. Bilal, Sh., Dzhenaliev, M.T.: Sufficient oscillation conditions for the Sturm-Liouville equation. Differ. Equ. 53(8), 1017–1023 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Campbell, S.L., Meyer, C.D.: Generalized Inverses of Linear Transformations. Reprint of the 1991 corrected reprint of the 1979 original, Classics in Applied Mathematics, Vol. 56, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2009)

  7. Došlý, O.: On some aspects of the Bohl transformation for Hamiltonian and symplectic systems. J. Math. Anal. Appl. 448(1), 281–292 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Došlý, O.: Relative oscillation of linear Hamiltonian differential systems. Math. Nachr. 290(14–15), 2234–2246 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Došlý, O., Elyseeva, J.V., Šimon Hilscher, R.: Symplectic Difference Systems: Oscillation and Spectral Theory. Pathways in Mathematics. Birkhäuser/Springer, Cham (2019)

    Book  MATH  Google Scholar 

  10. Elyseeva, J.V.: The comparative index for conjoined bases of symplectic difference systems. In: Elaydi, S., Cushing, J., Lasser, R., Ruffing, A., Papageorgiou, V., Van Assche, W. (eds.) Difference Equations, Special Functions, and Orthogonal Polynomials. Proceedings of the International Conference (Munich, 2005), pp. 168–177, World Scientific, London (2007)

  11. Elyseeva, J.V.: Comparative index for solutions of symplectic difference systems. Differential Equations 45(3), 445–459 (2009); translated from Differencial’nyje Uravnenija 45(3), 431–444 (2009)

  12. Elyseeva, J.V.: Comparison theorems for conjoined bases of linear Hamiltonian differential systems and the comparative index. J. Math. Anal. Appl. 444(2), 1260–1273 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Elyseeva, J.V.: On symplectic transformations of linear Hamiltonian differential systems without normality. Appl. Math. Lett. 68, 33–39 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Elyseeva, J.V.: The comparative index and transformations of linear Hamiltonian differential systems. Appl. Math. Comput. 330, 185–200 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Elyseeva, J.V.: Relative oscillation of linear Hamiltonian differential systems without monotonicity. Appl. Math. Lett. 103, 106173 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Elyseeva, J.V.: Comparison theorems for conjoined bases of linear Hamiltonian systems without monotonicity. Monatsh. Math. 193(2), 305–328 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Elyseeva, J., Šepitka, P., Šimon Hilscher, R.: Oscillation numbers for continuous Lagrangian paths and Maslov index. J. Dynam. Differential Equations, to appear (2022), https://doi.org/10.1007/s10884-022-10140-7

  18. Fabbri, R., Johnson, R., Núñez, C.: On the Yakubovich frequency theorem for linear non-autonomous control processes. Discrete Contin. Dyn. Syst. 9(3), 677–704 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Howard, P.: Maslov index and spectral counts for linear Hamiltonian systems on \({\mathbb{R}}\). J. Dynam. Differential Equations, to appear (2021), https://doi.org/10.1007/s10884-021-10065-7

  20. Kratz, W.: Quadratic Functionals in Variational Analysis and Control Theory. Akademie Verlag, Berlin (1995)

    MATH  Google Scholar 

  21. Kratz, W.: Definiteness of quadratic functionals. Analysis 23(2), 163–183 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kratz, W., Šimon Hilscher, R.: Rayleigh principle for linear Hamiltonian systems without controllability. ESAIM Control Optim. Calc. Var. 18(2), 501–519 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Reid, W.T.: Ordinary Differential Equations. John Wiley & Sons Inc., New York - London - Sydney (1971)

    MATH  Google Scholar 

  24. Šepitka, P., Šimon Hilscher, R.: Minimal principal solution at infinity for nonoscillatory linear Hamiltonian systems. J. Dynam. Differential Equations 26(1), 57–91 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Šepitka, P., Šimon Hilscher, R.: Principal solutions at infinity of given ranks for nonoscillatory linear Hamiltonian systems. J. Dynam. Differential Equations 27(1), 137–175 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Šepitka, P., Šimon Hilscher, R.: Principal and antiprincipal solutions at infinity of linear Hamiltonian systems. J. Differential Equations 259(9), 4651–4682 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Šepitka, P., Šimon Hilscher, R.: Comparative index and Sturmian theory for linear Hamiltonian systems. J. Differential Equations 262(2), 914–944 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Šepitka, P., Šimon Hilscher, R.: Focal points and principal solutions of linear Hamiltonian systems revisited. J. Differential Equations 264(9), 5541–5576 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Šepitka, P., Šimon Hilscher, R.: Singular Sturmian separation theorems for nonoscillatory symplectic difference systems. J. Difference Equ. Appl. 24(12), 1894–1934 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Šepitka, P., Šimon Hilscher, R.: Singular Sturmian separation theorems on unbounded intervals for linear Hamiltonian systems. J. Differential Equations 266(11), 7481–7524 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Šepitka, P., Šimon Hilscher, R.: Singular Sturmian comparison theorems for linear Hamiltonian systems. J. Differential Equations 269(4), 2920–2955 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Šepitka, P., Šimon Hilscher, R.: Sturmian comparison theorems for completely controllable linear Hamiltonian systems in singular case. J. Math. Anal. Appl. 487(2), 124030 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  33. Šepitka, P., Šimon Hilscher, R.: Distribution and number of focal points for linear Hamiltonian systems. Linear Algebra Appl. 611, 26–45 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  34. Šimon Hilscher, R.: On general Sturmian theory for abnormal linear Hamiltonian systems. In: Feng, W., Feng, Z., Grasselli, M., Ibragimov, A., Lu, X., Siegmund, S., Voigt, J. (eds.) Dynamical Systems, Differential Equations and Applications. Proceedings of the 8th AIMS Conference on Dynamical Systems, Differential Equations and Applications (Dresden, 2010). Discrete Contin. Dynam. Systems, Suppl. 2011, pp. 684–691, American Institute of Mathematical Sciences (AIMS), Springfield, MO (2011)

  35. Steinerberger, S.: Quantitative projections in the Sturm oscillation theorem. J. Math. Pures Appl. (9) 144, 1–16 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wahrheit, M.: Eigenvalue problems and oscillation of linear Hamiltonian systems. Int. J. Difference Equ. 2(2), 221–244 (2007)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Both authors contributed to the results obtained in this paper equally. Both authors read and approved the final manuscript. This research was supported by the Czech Science Foundation under grant GA19–01246S. The authors wish to thank an anonymous referee for valuable comments, which helped improve the overall presentation of the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Šimon Hilscher.

Additional information

Communicated by Gerald Teschl.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šepitka, P., Šimon Hilscher, R. Solutions with prescribed numbers of focal points of nonoscillatory linear Hamiltonian systems. Monatsh Math 200, 359–387 (2023). https://doi.org/10.1007/s00605-022-01780-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-022-01780-4

Keywords

Mathematics Subject Classification

Navigation