Skip to main content
Log in

A note on wave-breaking criteria for the Fornberg-Whitham equation

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this note, we study the wave breaking phenomena for the Fornberg-Whitham equation. By virtue of \(L^2\)-conservation law of solutions, we establish a new wave-breaking criterion for this equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whitham, G.: Variational methods and applications to water waves. Proc. R. Soc. A 299(1456), 6–25 (1967)

    MATH  Google Scholar 

  2. Fornberg, G., Whitham, G.: A numerical and theoretical study of certain nonlinear wave phenomena. Philos. Trans. R. Soc. Lond. Ser. A 289(1361), 373–404 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. Holmes, J.M.: Well-posedness of the Fornberg-Whitham equation on the circle. J. Differ. Equ. 260(12), 8530–8549 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Holmes, J., Thompson, R.C.: Well-posedness and continuity properties of the Fornberg-Whitham equation in Besov spaces. J. Differ. Equ. 263(7), 4355–4381 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hörmann, G.: Discontinuous traveling waves as weak solutions to the Fornberg-Whitham equation. J. Differ. Equ. 265(7), 2825–2841 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hörmann, G.: Solution concepts, well-posedness, and wave breaking for the Fornberg-Whitham equation. Monatsh. Math. 195(3), 421–449 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71(11), 1661 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Degasperis, A., Procesi, M.: Asymptotic integrability. Symmetry and perturbation theory, pp. 23–37. World Science, Singapore (1999)

    MATH  Google Scholar 

  9. Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier 50, 321–362 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Constantin, A.: On the scattering problem for the Camassa-Holm equation. Proc. R. Soc. Lond. A 457, 953–970 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Constantin, A., Strauss, W.A.: Stability of peakons. Commun. Pure Appl. Math. 53, 603–610 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Constantin, A.: Finite propagation speed for the Camassa-Holm equation. J. Math. Phys. 46(2), 023506 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa-Holm and Degasperis- Procesi equations. Arch. Ration. Mech. Anal. 192, 165–186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhou, Y.: Blow-up phenomenon for the integrable Degasperis-Procesi equation. Phys. Lett. A 328, 157–162 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Naumkin, P.I., Shishmarev, I.A.: Nonlinear nonlocal equations in the theory of waves. Americn Mathematical Society, Providence (1994)

    Book  MATH  Google Scholar 

  16. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equation. Acta Math. 181, 229–243 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hörmann, G.: Wave breaking of periodic solutions to the Fornberg-Whitham equation. Discrete Contin. Dyn. Syst. 38(3), 1605–1613 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Haziot, S.: Wave breaking for the Fornberg-Whitham equation. J. Differ. Equ. 263, 8178–8185 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wei, L.: Wave breaking analysis for the Fornberg-Whitham equation. J. Differ. Equ. 265, 2886–2896 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wu, X.L., Zhang, Z.: On the blow-up of solutions for the Fornberg-Whitham equation. Nonlinear Anal. Real World Appl. 44, 573–588 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yang, S.J.: Wave breaking phenomena for the Fornberg-Whitham equation. J. Dyn. Differ. Equ. 33, 1753–1758 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wei, L.: New wave-breaking criteria for the Fornberg-Whitham equation. J. Differ. Equ. 280, 571–589 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. Brandolese, L., Cortez, M.F.: Blowup issues for a class of nonlinear dispersive wave equations. J. Differ. Equ. 256, 3981–3998 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Brandolese, L., Cortez, M.F.: On permanent and breaking waves in hyperelastic rods and rings. J. Funct. Anal. 266, 6954–6987 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Brandolese, L.: Local-in-space criteria for blowup in shallow water and dispersive rod equations. Commun. Math. Phys. 330, 401–414 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. McKean, H.P.: Breakdown of a shallow water equation. Asian J. Math. 2(4), 867–874 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Fund of Hunan Provincial Education Department (No.21A0414).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xijun Deng.

Additional information

Communicated by Adrian Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X. A note on wave-breaking criteria for the Fornberg-Whitham equation. Monatsh Math 202, 93–102 (2023). https://doi.org/10.1007/s00605-022-01775-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-022-01775-1

Keywords

Mathematics Subject Classification

Navigation