Skip to main content
Log in

Blow-up issues for the hyperelastic rod equation

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this paper we consider the hyperelastic rod equation which describes far-field, finite length, finite amplitude radial deformation waves in cylindrical compressible hyperelastic rods. Based on the conservation laws and the blow-up scenario, we derive a new blow-up result which extending earlier blow-up results for the hyperelastic rod equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility Statement

All data generated or analysed during this study are included in this published article.

References

  1. Dai, H.H.: Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod. Acta Mechanica 127(1–4), 193–207 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Constantin, A., Strauss, W.: Stability of a class of solitary waves in compressible elastic rods. Phys. Lett. A 270, 140–148 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems. Philosoph. Trans. R. Soc. Lond. 272(1220), 47–78 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  4. Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71(11), 1661–1664 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Mathematica 181(2), 229–243 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Constantin, A., Escher, J.: Global existence and blow-up for a shallow water equation. Annali Della Scuola Normale Superiore Di Pis 26(2), 303–328 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier 50, 321–362 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Constantin, A., Escher, J.: On the blow-up rate and the blow-up set of breaking waves for a shallow water equation. Mathematische Zeitschrift 233(1), 75–91 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mckean, H.P.: Breakdown of a shallow water equation. Asian J. Math. 2(4), 867–874 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Zhou, Y.: Local well-posedness and blow-up criteria of solutions for a rod equation. Mathematische Nachrichten 278(14), 1726–1739 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Xinglong, Wu.: On some wave breaking for the nonlinear integrable shallow water wave equations. Nonlinear Anal. 127, 352–361 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yi, A.L., Olver, P.J.: Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation. J. Differ. Equ. 162(1), 27–63 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wahlén, E.: On the blow-up of solutions to a nonlinear dispersive rod equation. J. Math. Anal. Appl. 323(2), 1318–1324 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhou, Y.: Blow-up phenomenon for a periodic rod equation. Phys. Lett. A 353, 479–486 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guo, Z., Zhou, Y.: Wave breaking and persistence properties for the dispersive rod equation. SIAM J. Math. Anal. 40(6), 2567–2580 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhou, Y.: Blow-up of solutions to the DGH equation. J. Funct. Anal. 250(1), 227–248 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yin, Z.: On the blow-up of solutions of a periodic nonlinear dispersive wave equation in compressible elastic rods. J. Math. Anal. Appl. 288(1), 232–245 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dai, H.H., HuoY: Solitary shock waves and other travelling waves in a general compressible hyperelastic rod. Proceedings of the Royal Society A. Math. Phys. Eng. Sci. 456(1994), 331–363 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by Yunnan Fundamental Research Projects (Grant No. KKSQ202107025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaojie Yang.

Additional information

Communicated by Adrian Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Yang, S. Blow-up issues for the hyperelastic rod equation. Monatsh Math 201, 565–571 (2023). https://doi.org/10.1007/s00605-022-01715-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-022-01715-z

Keywords

Mathematics Subject Classification

Navigation