Skip to main content
Log in

The Kirillov model in families

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

Let F be a non archimedean local field, let k be an algebraically closed field of characteristic \(\ell \) different from the residual characteristic of F, and let A be a commutative Noetherian W(k)-algebra, where W(k) denotes the Witt vectors. By extending recent results of the second author regarding the Rankin–Selberg functional equations, we show that if V is an \(A[{\text {GL}}_n(F)]\)-module of Whittaker type, then the mirabolic restriction map on its Whittaker space is injective. This gives a new quick proof of the existence of Kirillov models for representations of Whittaker type, including complex representations, which generalizes to the \(\ell \)-modular and families setting, in contrast with the previous proofs. In the special case where \(A=k=\overline{{\mathbb {F}}_{\ell }}\) and V is irreducible generic, our result in particular answers a question of Vignéras from (Compos Math 72(1):33–66, 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed.

References

  1. Bernstein, I.N., Zelevinsky, A.V.: Representations of the group \(GL(n, F),\) where \(F\) is a local non-Archimedean field. Uspehi Mat. Nauk 31(3(189)), 5–70 (1976)

    MathSciNet  Google Scholar 

  2. Bernstein, I.N., Zelevinsky, A.V.: Induced representations of reductive \({ p}\)-adic groups. I. Ann. Sci. École Norm. Sup. (4) 10(4), 441–472 (1977)

    Article  MathSciNet  Google Scholar 

  3. Bernstein, J.N.: \(P\)-invariant distributions on \({\rm GL}(N)\) and the classification of unitary representations of \({\rm GL}(N)\) (non-Archimedean case). In: Lie Group Representations, II (College Park, Md., 1982/1983), Volume 1041 of Lecture Notes in Mathematics, pp. 50–102. Springer, Berlin (1984)

  4. Casselman, W.: On some results of Atkin and Lehner. Math. Ann. 201, 301–314 (1973)

    Article  MathSciNet  Google Scholar 

  5. Emerton, M., Helm, D.: The local Langlands correspondence for \({\rm GL}_n\) in families. Ann. Sci. Éc. Norm. Supér. (4) 47(4), 655–722 (2014)

    Article  MathSciNet  Google Scholar 

  6. Gel’fand, I.M., Kajdan, D.A.: Representations of the group \({\rm GL}(n,K)\) where \(K\) is a local field. In: Lie Groups and Their Representations (Proceedings of Summer School, Bolyai János Mathematical Society, Budapest, 1971), pp. 95–118. Halsted, New York (1975)

  7. Godement, R., Jacquet, H.: Zeta Functions of Simple Algebras. Lecture Notes in Mathematics, vol. 260. Springer, Berlin (1972)

    Book  Google Scholar 

  8. Helm, D.: Whittaker models and the integral Bernstein center for \(GL(n)\). Duke Math. J. 165(9), 1597–1628 (2016)

    Article  MathSciNet  Google Scholar 

  9. Helm, D., Moss, G.: Converse theorems and the local Langlands correspondence in families. Invent. Math. 214, 999–1022 (2018)

    Article  MathSciNet  Google Scholar 

  10. Jacquet, H.: A correction to conducteur des représentations du groupe linéaire. Pac. J. Math. 260(2), 514–525 (2012)

    Article  Google Scholar 

  11. Jacquet, H., Langlands, R.P.: Automorphic Forms on GL(2). Lecture Notes in Mathematics, vol. 114. Springer, Berlin (1970)

    MATH  Google Scholar 

  12. Jacquet, H., Piatetski-Shapiro, I.I., Shalika, J.: Conducteur des représentations du groupe linéaire. Math. Ann. 256(2), 199–214 (1981)

    Article  MathSciNet  Google Scholar 

  13. Jacquet, H., Piatetski-Shapiro, I.I., Shalika, J.A.: Rankin–Selberg convolutions. Am. J. Math. 105(2), 367–464 (1983)

    Article  MathSciNet  Google Scholar 

  14. Jacquet, H., Piatetski-Shapiro, I.I., Shalika, J. Automorphic forms on GL(3). I. Ann. of Math. (2), 109(1):169–212 (1979)

  15. Jacquet, H., Shalika, J.: The Whittaker models of induced representations. Pac. J. Math. 109(1), 107–120 (1983)

    Article  MathSciNet  Google Scholar 

  16. Kirillov, A.A.: Infinite-dimensional unitary representations of a second-order matrix group with elements in a locally compact field. Dokl. Akad. Nauk SSSR 150, 740–743 (1963)

    MathSciNet  Google Scholar 

  17. Kurinczuk, R., Matringe, N.: Extension of Whittaker functions and test vectors. Res. Number Theory 4(3), 31, 18 (2018)

    Article  MathSciNet  Google Scholar 

  18. Kurinczuk, R., Matringe, N.: Rankin–Selberg local factors modulo \(\ell \). Sel. Math. (N.S.) 23(1), 767–811 (2017)

    Article  MathSciNet  Google Scholar 

  19. Matringe, N.: Generalized Whittaker functions and Jacquet modules. arXiv:2009.01624

  20. Moss, G.: Gamma factors of pairs and a local converse theorem in families. Int. Math. Res. Not. IMRN 16, 4903–4936 (2016)

    Article  MathSciNet  Google Scholar 

  21. Moss, G.: Interpolating local constants in families. Math. Res. Lett. 23(6), 1789–1817 (2016)

    Article  MathSciNet  Google Scholar 

  22. Moss, G.: Characterizing the mod-\(\ell \) local Langlands correspondence by nilpotent gamma factors. Nagoya Math. J. (2020). https://doi.org/10.1017/nmj.2020.8

    Article  Google Scholar 

  23. Tate, J.T.: Fourier analysis in number fields, and Hecke’s zeta-functions. In: Algebraic Number Theory (Proceedings of Instructional Conference, Brighton, 1965), pp. 305–347. Thompson, Washington, DC (1967)

  24. Vignéras, M.-F.: Représentations modulaires de \({\rm GL}(2, F)\) en caractéristique \(l,\;F\) corps \(p\)-adique, \(p\ne l\). Compos. Math. 72(1), 33–66 (1989)

    MATH  Google Scholar 

  25. Vignéras, M.-F.: Représentations \(\ell \)-modulaires d’un groupe réductif \(p\)-adique avec \(\ell \ne p\). Progress in Mathematics, vol. 137. Birkhäuser Boston Inc., Boston (1996)

  26. Vignéras, M.-F.: On highest Whittaker models and integral structures. In: Contributions to Automorphic Forms, Geometry, and Number Theory, pp. 773–801. Johns Hopkins Univ. Press, Baltimore (2004)

  27. Vignéras, M.F.: Modele de Kirillov entier. C. R. Acad. Sci. Ser. I Math. 326, 411–416 (1998)

    MATH  Google Scholar 

Download references

Acknowledgements

The first author thanks the Abdus Salam School of Mathematical Sciences where parts of the paper were written for its hospitality, and the CNRS for giving him a “délégation.” The second author thanks the CNRS for its “poste-rouge” visitor funding, and the laboratoire de mathématiques de Versailles, where the paper started, for their hospitality, as well as the University of Utah. Both authors thank Olivier Fouquet and Rob Kurinczuk for their interest, and the referees for their useful comments and corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Moss.

Additional information

Communicated by Alberto Minguez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matringe, N., Moss, G. The Kirillov model in families. Monatsh Math 198, 393–410 (2022). https://doi.org/10.1007/s00605-022-01675-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-022-01675-4

Keywords

Mathematics Subject Classification

Navigation