Skip to main content

Non-uniform continuity of the Fokas–Olver–Rosenau–Qiao equation in Besov spaces


In this paper, we consider the solution map of the Cauchy problem to the Fokas–Olver–Rosenau–Qiao equation on the real line and prove that the solution map of this problem is not uniformly continuous on the initial data in Besov spaces. Our result extends the previous results in Himonas and Mantzavinos (Nonlinear Anal 95:499–529, 2014) and Li et al. (J Math Fluid Mech 22:50, 2020).

This is a preview of subscription content, access via your institution.

Data availability

The authors declare that this research is purely theoretical and does not associate with any datas.


  1. 1.

    Bahouri, H., Chemin, J., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Springer, Berlin (2011)

    Book  Google Scholar 

  2. 2.

    Chang, X., Szmigielski, J.: Lax integrability and the peakon problem for the modified Camassa–Holm equation. Comm. Math. Phys. 358, 295–341 (2018)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1661–1664 (1993)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Constantin, A.: The Hamiltonian structure of the Camassa–Holm equation. Expo. Math. 15, 53–85 (1997)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Constantin, A.: On the scattering problem for the Camassa–Holm equation. Proc. R. Soc. Lond. A 457, 953–970 (2001)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Constantin, A., Escher, J.: Particle trajectories in solitary water waves. Bull. Am. Math. Soc. 44, 423–431 (2007)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Constantin, A., Molinet, L.: Orbital stability of solitary waves for a shallow water equation. Phys. D 157, 75–89 (2001)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Constantin, A., Strauss, W.: Stability of peakons. Comm. Pure Appl. Math. 53, 603–610 (2000)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Fokas, A.: On a class of physically important integrable equations. Phys. D 87, 145–150 (1995)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Fu, Y., Gui, G., Liu, Y., Qu, C.: On the Cauchy problem for the integrable modified Camassa–Holm equation with cubic nonlinearity. J. Differ. Equ. 255, 1905–1938 (2013)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Fuchssteiner, B.: Some tricks from the symmetry toolbox for nonlinear equations: generalisations of the Camassa–Holm equation. Phys. D 95, 229–243 (1996)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Gui, G., Liu, Y., Olver, P., Qu, C.: Wave-breaking and peakons for a modified Camassa–Holm equation. Commun. Math. Phys. 319, 731–759 (2013)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Himonas, A., Misiołek, G.: High-frequency smooth solutions and well-posedness of the Camassa–Holm equation. Int. Math. Res. Not. 51, 3135–3151 (2005)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Himonas, A., Kenig, C.: Non-uniform dependence on initial data for the CH equation on the line. Diff. Integr. Equ. 22, 201–224 (2009)

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Himonas, A., Kenig, C., Misiołek, G.: Non-uniform dependence for the periodic CH equation. Commun. Partial Differ. Equ. 35, 1145–1162 (2010)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Himonas, A., Holliman, C.: The Cauchy problem for the Novikov equation. Nonlinearity 25, 449–479 (2012)

    MathSciNet  Article  Google Scholar 

  17. 17.

    Himonas, A., Mantzavinos, D.: The Cauchy problem for the Fokas–Olver–rosenau–Qiao equation. Nonlinear Anal. 95, 499–529 (2014)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Himonas, A., Matzavinos, D.: Hölder continuity for the Fokas–Olver–Rosenau–Qiao equation. J. Nonlinear Sci. 24, 1105–1124 (2014)

    MathSciNet  Article  Google Scholar 

  19. 19.

    Himonas, A., Holliman, C.: Non-uniqueness for the Fokas–Olver–Rosenau–Qiao equation. J. Math. Anal. Appl. 470, 647–658 (2019)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Holmes, J., Tiglay, F., Thompson, R.: Continuity of the data-to-solution map for the FORQ equation in Besov spaces. Differ. Integral Equ. 34(5/6), 295–314 (2021)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Kenig, C., Ponce, G., Vega, L.: On the ill-posedness of some canonical dispersive equations. Duke Math. 106, 617–633 (2001)

    MathSciNet  Article  Google Scholar 

  22. 22.

    Li, J., Yin, Z.: Well-posedness and analytic solutions of the two-component Euler–Poincaré system. Monatsh. Math. 183, 509–537 (2017)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Li, J., Yu, Y., Zhu, W.: Non-uniform dependence on initial data for the Camassa–Holm equation in Besov spaces. J. Differ. Equ. 269, 8686–8700 (2020)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Li, J., Li, M., Zhu, W.: Non-uniform dependence for Novikov equation in Besov spaces. J. Math. Fluid Mech. 22(4), 50 (2020)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Liu, X., Liu, Y., Qu, C.: Orbital stability of the train of peakons for an integrable modified Camassa–Holm equation. Adv. Math. 255, 1–37 (2014)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Olver, P.J., Rosenau, P.: Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. Rev. E 53, 1900–1906 (1996)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Qiao, Z.: A new integrable equation with cuspons and W/M-shape-peaks solitons. J. Math. Phys. 47, 112701 (2006)

    MathSciNet  Article  Google Scholar 

  28. 28.

    Qiao, Z.: New integrable hierarchy, its parametric solutions, cuspons, one-peak solitons, and M/W shape peak solitons. J. Math. Phys. 48, 082701 (2007)

    MathSciNet  Article  Google Scholar 

  29. 29.

    Qu, C., Liu, X., Liu, Y.: Stability of peakons for an integrable modified Camassa–Holm equation with cubic nonlinearity. Comm. Math. Phys. 322, 967–997 (2013)

    MathSciNet  Article  Google Scholar 

Download references


The authors want to thank the referees for their careful reading and helpful suggestions, which greatly improved the presentation of this paper. The authors are very grateful to Dr. Jinlu Li for some useful suggestions. Y. Yu is supported by the Natural Science Foundation of Anhui Province (No. 1908085QA05). This work is partially supported by the National Natural Science Foundation of China (Grant No. 11801090).

Author information



Corresponding author

Correspondence to Xing Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Adrian Constantin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Yu, Y. Non-uniform continuity of the Fokas–Olver–Rosenau–Qiao equation in Besov spaces. Monatsh Math (2021).

Download citation


  • Fokas–Olver–Rosenau–Qiao equation
  • Non-uniform continuous dependence
  • Besov spaces

Mathematics Subject Classification

  • 35B30
  • 35G25
  • 35Q53