Skip to main content

Periodic and soliton structures in a generalized Klein–Gordon equation with horizontal singular lines


In this paper we give a detailed analysis on the existence of traveling wave (periodic) solutions to a generalized Klein–Gordon equation with a singular nonlinearity generated by two horizontal lines. In particular, we study some solutions that pass through (or meet) these singular lines. In this setting, we display some examples of new soliton structures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Agüero, M.A., de L. Najera, Ma., Carrillo, M.: Nonclassic solitonic structures in DNA’s vibrational dynamics. Int. J. Mod. Phys. B 22(16), 2571–2582 (2008)

  2. 2.

    Agüero, M.A., Paulin, M.J.: Solitonic structures in a nonlinear model with interparticle anharmonic interaction. Phys. Rev. E 63, 046606 (2001)

    Article  Google Scholar 

  3. 3.

    Andrade, J., Davila, N., Perez-Chavela, E., Vidal, C.: Dynamics and regularization of the Kepler problem on surfaces of constant curvature. Can. J. Math. 69, 961–991 (2017)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Baacke, J.: One-loop corrections to the Nielsen-Olesen vortex: collective oscillations. Phys. Rev. D 83, 045028 (2011)

    Article  Google Scholar 

  5. 5.

    Bazeia, D., da Hora, E., Menezes, R., de Oliveira, H.P., dos Santos, C.: Compactlike kinks and vortices in generalized models. Phys. Rev. D 81, 125016 (2010)

    Article  Google Scholar 

  6. 6.

    Bazeia, D., da Hora, E., dos Santos, C., Menezes, R.: Generalized self-dual Chern-Simons vortices. Phys. Rev. D 81, 125014 (2010)

    Article  Google Scholar 

  7. 7.

    Bishop, A.R., Lewis, W.F.: A theory of intrinsic coercivity in narrow magnetic domain wall materials. J. Phys. C Solid State Phys. 12, 3811–3825 (1979)

    Article  Google Scholar 

  8. 8.

    Burzlaff, J., Navarro-Lerida, F.: Nielsen-Olesen vortices for large Ginzburg-Landau parameter. Phys. Rev. D 82, 125033 (2010)

    Article  Google Scholar 

  9. 9.

    Chaves, A., Peeters, M., Peeters, F.M., Farias, G.A., Milošević, M.V.: Vortex-vortex interaction in bulk superconductors: Ginzburg-Landau theory. Phys. Rev. B 83, 054516 (2011)

    Article  Google Scholar 

  10. 10.

    Dusuel, S., Michaux, P., Remoissenet, M.: From kinks to compacton like kinks. Phys. Rev. E 57(2), 2320–2326 (1998)

    Article  Google Scholar 

  11. 11.

    Godoy, J., Zamora, M.: Periodic solutions for indefinite singular equations with applications to the weak case. Proc. Roy. Soc. Edinb. Sect. A. Math 149(5), 1135–1152 (2019)

    Article  Google Scholar 

  12. 12.

    Godoy, J., Zamora, M.: A general result to the existence of a periodic solution to an indefinite equation with a weak singularity. J. Dyn. Differ. Equ. 31(1), 451–468 (2018)

    MathSciNet  Article  Google Scholar 

  13. 13.

    Godoy, J., Morales, N., Zamora, M.: Existence and multiplicity of periodic solutions to an indefinite singular equation with two singularities. The degenerate case. Disc. Contin. Dyn. Syst. A 39(7), 4137–4156 (2019)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Hakl, R., Zamora, M.: Periodic solutions of an indefinite singular equation arising from the Kepler’s problem on the sphere. Can. J. Math 70, 173–190 (2018)

  15. 15.

    Hakl, R., Zamora, M.: Periodic solutions to second-order indefinite singular equations. J. Differ. Equ. 263, 451–469 (2017)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Hobart, R.: Peierls stress dependence on dislocation width. J. Appl. Phys. 36, 1944–1948 (1965)

    Article  Google Scholar 

  17. 17.

    Kaup, J.: Nonlinear Schrdinger solitons in the forced toda lattice. Phys. D 25, 361–368 (1987)

    MathSciNet  Article  Google Scholar 

  18. 18.

    Kogan, V.G., Schmalian, J.: Ginzburg-Landau theory of two-band superconductors: Absence of type-1.5 superconductivity. Phys. Rev. B 83, 054515 (2011)

    Article  Google Scholar 

  19. 19.

    Li, J., Chen, G.: Bifurcations of traveling wave and breather solutions of a general class of nonlinear wave equations. Int. J. Bifurc. Chaos 15(9), 2913–2926 (2005)

    MathSciNet  Article  Google Scholar 

  20. 20.

    Li, J., Chen, G.: Bifurcations of traveling wave solutions for four classes of nonlinear wave equations. Int. J. Bifurc. Chaos 15(12), 3973–3998 (2005)

    MathSciNet  Article  Google Scholar 

  21. 21.

    Li, J., Zhang, J.: Bifurcations of traveling wave solutions in generalization form of the modified KdV equation. Chaos Solit. Frac. 20(4), 899–913 (2004)

    Article  Google Scholar 

  22. 22.

    Li, J., Zhao, X., Chen, G.: Breaking wave solutions to the second class of singular nonlinear traveling wave equations. Int. J. Bifurc. Chaos 19(4), 1289–1306 (2009)

    MathSciNet  Article  Google Scholar 

  23. 23.

    Marò, S.: Relativistic pendulum and invariant curves. Disc. Contin. Dyn. Syst. A 35, 1139–1162 (2015)

    MathSciNet  Article  Google Scholar 

  24. 24.

    Peyrard, M., Bishop, A.R.: Statistical mechanics of a nonlinear model for DNA denaturation. Phys. Rev. Lett. 62(23), 2755–2758 (1989)

    Article  Google Scholar 

  25. 25.

    Remoissenet, M.: Waves Called Solitons. Springer-Verlag, Heidelberg (1999)

    Book  Google Scholar 

  26. 26.

    Ruiz-Herrera, A., Torres, P.J.: Periodic solutions and chaotic dynamics in forced impact oscillators. SIAM J. Appl. Dyn. Syst. 12, 383–414 (2013)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Shen, J., Li, J., Xu, W.: Bifurcations of travelling wave solutions in a model of the hydrogen-bonded system. Appl. Math. Comput. 171(1), 242–271 (2005)

    MathSciNet  MATH  Google Scholar 

  28. 28.

    Shen, J., Miao, B., Guo, L.: Bifurcation analysis of travelling wave solutions in the nonlinear Klein-Gordon model with anharmonic coupling. Appl. Math. Comput. 188, 1975–1983 (2007)

    MathSciNet  MATH  Google Scholar 

  29. 29.

    Ureña, A.J.: A counterexample for singular equations with indenite weight. Adv. Nonlinear Stud. 17, 497–516 (2017)

    MathSciNet  Article  Google Scholar 

  30. 30.

    Wang, J.P.: Stability of vortex in a two-component superconductor. Phys. Rev. B 82, 132505 (2010)

    Article  Google Scholar 

  31. 31.

    Zhang, L., Chen, L., Hou, X.: The effects of horizontal singular straight line in a generalized nonlinear Klein-Gordon model equation. Nonlinear Dyn. 72, 789–801 (2013)

    MathSciNet  Article  Google Scholar 

Download references


We would like to thank the referee for detailed comments on the manuscript and their suggestions to improve its readability.

Author information



Corresponding author

Correspondence to Manuel Zamora.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Adrian Constantin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Morales, N., Zamora, M. Periodic and soliton structures in a generalized Klein–Gordon equation with horizontal singular lines. Monatsh Math 196, 877–910 (2021).

Download citation


  • Klein–Gordon equation
  • Horizontal singular lines
  • Traveling wave solutions
  • Periodic solutions
  • Soliton structures

Mathematics Subject Classification

  • 81Q05
  • 35C07
  • 35C08
  • 34C25