Skip to main content

A generalization of the Gauss–Kuzmin–Wirsing constant


The Gauss–Kuzmin–Wirsing constant is generalized to the transformation \(T_p(x)=\left\{ \dfrac{p}{x}\right\} \), where p is any given positive integer and \(\left\{ \dfrac{p}{x}\right\} \) denotes the fractional part of \(\dfrac{p}{x}\). A near-optimal estimate for the generalized constant is obtained.

This is a preview of subscription content, access via your institution.

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.


  1. 1.

    Anselm, M., Weintraub, S.H.: A generalization of continued fractions. J. Number Theory 131, 2442–2460 (2011)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Burger, E.B., Gell-Redman, J., Kravitz, R., Walton, D., Yates, N.: Shrinking the period lengths of continued fractions while still capturing convergents. J. Number Theory 128(1), 144–153 (2008)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Dajani, K., Kraaikamp, C., Van der Wekken, N.: Ergodicity of \(N\)-continued fraction expansions. J. Number Theory 133, 3183–3204 (2013)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Iosifescu, M., Kraaikamp, C.: Metrical Theory of Continued Fractions. Kluwer Academic Publisher, Dordrecht (2002)

    Book  Google Scholar 

  5. 5.

    Kuzmin, R.O.: On a problem of Gauss. Dokl. Akad. Nauk SSSR Ser. A 375–380 (1928)

  6. 6.

    Lascu, D.: Dependence with complete connections and the Gauss-Kuzmin theorem for \(N\)-continued fractions. J. Math. Anal. Appl. 444, 610–623 (2016)

    MathSciNet  Article  Google Scholar 

  7. 7.

    Lascu, D.: Metric properties of \(N\)-continued fractions. Math. Rep. 2, 165–181 (2017)

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Lévy, P.: Sur les lois de probabilité dont dépendent les quotients complets et incomplets dune fraction continue. Bull. Soc. Math. France 57, 178–194 (1929)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Sebe, G.I.: Convergence rate for a continued fraction expansion related to Fibonacci type sequences. Tokyo J. Math. 33(2), 487–497 (2010)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Sebe, G.I.: A near-optimal solution to the Gauss-Kuzmin-Lévy problem for \(\theta \)-expansions. J. Number Theory 171, 43–55 (2017)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Sebe, G.I., Lascu, D.: A two-dimensional Gauss-Kuzmin theorem for N-continued fraction expansions. Publ. Math. Debrecen 96(3–4), 291–314 (2020)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Sun, P.: Ergodic properties of \(N\)-continued fractions. preprint, arXiv:1704.08281 (2017)

  13. 13.

    Sun, P.: A generalization of Gauss-Kuzmin-Lévy theorem. Acta Mathematica Scientia 38B, 965–972 (2018)

    Article  Google Scholar 

  14. 14.

    Wirsing, E.: On the theorem of Gauss-Kuzmin-Lévy and a Frobenius-type theorem for function spaces. Acta Arith. 24, 507–528 (1974)

    Article  Google Scholar 

Download references


The author is supported by National Natural Science Foundation of China (No. 11571387) and CUFE Young Elite Teacher Project (No. QYP1902).

Author information



Corresponding author

Correspondence to Peng Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by H. Bruin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, P. A generalization of the Gauss–Kuzmin–Wirsing constant. Monatsh Math (2021).

Download citation


  • Gauss transformation
  • Continued fraction
  • Transfer operator
  • Gauss’ problem
  • Wirsing’s constant

Mathematics Subject Classification

  • Primary: 11J70
  • 11K50
  • 37C30