Skip to main content
Log in

2-Adic properties for the numbers of representations in the alternating groups

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

Let A be the direct product of a cyclic group of order \(2^u\) with \(u\ge 1\) and a cyclic group of order \(2^v\) with \(u\ge v\ge 0\). There are some 2-adic properties of the number \(h(A,A_n)\) of homomorphisms from A to the alternating group \(A_n\) on n-letters, which are similar to those of the number of homomorphisms from A to the symmetric group on n-letters. The exponent of 2 in the decomposition of \(h(A,A_n)\) into prime factors is denoted by \({\mathrm {ord}}_2(h(A,A_n))\). Let [x] denote the largest integer not exceeding a real number x. For any nonnegative integer n, the lower bound of \({\mathrm {ord}}_2(h(A,A_n))\) is \(\sum _{j=1}^u[n/2^j]+[n/2^{u+2}]-[n/2^{u+3}]-1\) if \(u=v\ge 1\), and is \(\sum _{j=1}^u[n/2^j]-(u-v)[n/2^{u+1}]-1\) otherwise. For any positive odd integer y, \({\mathrm {ord}}_2(h(A,A_{2^{u+1}y}))\) and \({\mathrm {ord}}_2(h(A,A_{2^{u+1}y+1}))\) are described by certain 2-adic integers if either \(u\ge v+2\ge 3\) or \(u\ge 1\) and \(v=0\). The values \(\{h(A,A_n)\}_{n=0}^\infty \) are explained by certain 2-adic analytic functions unless \(u=v+1\ge 2\). The results are obtained by using the generating function \(\sum _{n=0}^\infty h(A,A_n)X^n/n!\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chowla, S., Herstein, I.N., Moore, W.K.: On recursions connected with symmetric groups I. Can. J. Math. 3, 328–334 (1951)

    Article  MathSciNet  Google Scholar 

  2. Conrad, K.: \(p\)-adic properties of truncated Artin–Hasse coefficients, preprint (1998)

  3. Dieudonné, J.: On the Artin–Hasse exponential series. Proc. Am. Math. Soc. 8, 210–214 (1957)

    Article  MathSciNet  Google Scholar 

  4. Dress, A., Yoshida, T.: On \(p\)-divisibility of the Frobenius numbers of symmetric groups (unpublished) (1992)

  5. Dwork, B.: A note on the \(p\)-adic gamma function, Groupe d’étude d’Analyse ultram\(\acute{\text{e}}\)trique, 9e année, 1981/82, fasc. 3, n\({}^\circ \) J5

  6. Gouvêa, F.Q.: \(p\)-adic Numbers, 2nd edn. Universitext, Springer, New York (1997)

  7. Grady, M., Newman, M.: Residue periodicity in subgroup counting functions. Contemp. Math. 166, 265–273 (1994)

    Article  MathSciNet  Google Scholar 

  8. Ishihara, H., Ochiai, H., Takegahara, Y., Yoshida, T.: \(p\)-divisibility of the number of solutions of \(x^p=1\) in a symmetric group. Ann. Comb. 5, 197–210 (2001)

    Article  MathSciNet  Google Scholar 

  9. Katsurada, H., Takegahara, Y., Yoshida, T.: The number of homomorphisms from a finite abelian group to a symmetric group. Commun. Algebra 28, 2271–2290 (2000)

    Article  MathSciNet  Google Scholar 

  10. Kim, D., Kim, J.S.: A combinatorial approach to the power of 2 in the number of involutions. J. Comb. Theory Ser. A 117, 1082–1094 (2010)

    Article  MathSciNet  Google Scholar 

  11. Koblitz, N.: \(p\)-Adic Numbers, \(p\)-Adic Analysis, and Zeta-Functions, 2nd edn. Springer, New York (1984)

    Book  Google Scholar 

  12. Koda, T., Sato, M., Takegahara, Y.: \(2\)-adic properties for the numbers of involutions in the alternating groups. J. Algebra Appl. 14, 1550052 (2015)

    Article  MathSciNet  Google Scholar 

  13. Krattenthaler, C., Müller, T.W.: Truncated versions of Dwork’s lemma for exponentials of power series and \(p\)-divisibility of arithmetic functions. Adv. Math. 283, 489–529 (2015)

    Article  MathSciNet  Google Scholar 

  14. Müller, T.: Enumerating representations in finite wreath products. Adv. Math. 153, 118–154 (2000)

    Article  MathSciNet  Google Scholar 

  15. Müller, T., Shareshian, J.: Enumerating representations in finite wreath products II: explicit formulas. Adv. Math. 171, 276–331 (2002)

    Article  MathSciNet  Google Scholar 

  16. Ochiai, H.: A \(p\)-adic property of the Taylor series of \(\exp (x+x^p/p)\). Hokkaido Math. J. 28, 71–85 (1999)

    Article  MathSciNet  Google Scholar 

  17. Riordan, J.: An Introduction to Combinatorial Analysis. Wiley, New York (1958)

    MATH  Google Scholar 

  18. Robert, A.M.: A Course in \(p\)-Adic Analysis. Springer, New York (2000)

    Book  Google Scholar 

  19. Takegahara, Y.: A generating function for the number of homomorphisms from a finitely generated abelian group to an alternating group. J. Algebra 248, 554–574 (2002)

    Article  MathSciNet  Google Scholar 

  20. Takegahara, Y.: Generating functions for permutation representations. J. Algebra 281, 68–82 (2004)

    Article  MathSciNet  Google Scholar 

  21. Takegahara, Y.: On Wohlfahrt series and wreath products. Adv. Math. 209, 526–546 (2007)

    Article  MathSciNet  Google Scholar 

  22. Takegahara, Y.: The number of homomorphisms from a finite abelian group to a symmetric group (II). Commun. Algebra 44, 2402–2442 (2016)

    Article  MathSciNet  Google Scholar 

  23. Takegahara, Y.: \(p\)-adic estimates of the number of permutation representations. Adv. Math. 349, 367–425 (2019)

    Article  MathSciNet  Google Scholar 

  24. Wohlfahrt, K.: Über einen Satz von Dey und die Modulgruppe. Arch. Math. (Basel) 29, 455–457 (1977)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yugen Takegahara.

Additional information

Communicated by John S. Wilson.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by JSPS KAKENHI Grant No. JP19K03436.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takegahara, Y. 2-Adic properties for the numbers of representations in the alternating groups. Monatsh Math 194, 339–370 (2021). https://doi.org/10.1007/s00605-020-01478-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-020-01478-5

Keywords

Mathematics Subject Classification

Navigation